從歐盟、新加坡固網法規檢視台灣高速寬頻環境發展困境

刊登期別
第26卷第9期,2014年09月
 

※ 從歐盟、新加坡固網法規檢視台灣高速寬頻環境發展困境, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6650&no=67&tp=1 (最後瀏覽日:2026/01/28)
引註此篇文章
你可能還會想看
英國對人類生殖及胚胎法案之檢討進行公眾諮議

  英國政府於 8 月 16 日宣布,對 1990 年所公布人類生殖及胚胎法案( the Human Fertilisation and Embryology Act 1990, the HFE Act )之檢討,展開公眾諮議活動,本項諮議活動將持續至今年 11 月 25 日。   本項諮議活動,源自於英國政府意識到該項法案雖然為英國的人類胚胎相關技術的研發提供了穩健的法制基礎,但隨著科技的進步,該項法律早已跟不上時代的腳步,甚至形成阻礙;有鑑於此,英國政府於 2004 年 1 月公布檢討上述法案,這項檢討包括預定在 2005 舉行公眾諮議活動( consultation ),希望夠過公眾參與獲得各界對上述法案的批評與建言,一方面建立公眾對相關科技的信心,一方面檢視該法是否仍適合英國 21 世紀初期的需求,並其建立一套為社會廣泛所接受的規範架構。本項諮詢的主要議題,包括了為醫療目的而選取胚胎之相關管控規範、供研究目的用之胚胎的定義與 粒線體遺傳疾病( mitochondrial disease )研究之規範。 根據英國健康部在其網站上發表的文件指出,這項檢討希望參酌科技的進展、社會態度的轉變、國際相關科技的發展與對可確實有效之法規的需求。   這項活動引起了英國下議院科技委員會( the House of Commons Science and Technology Committee )對生殖科技( reproductive technologies )與相關法律的注意,並對此做出回應。科技委員會建議,未來的修正應不會對胚胎重新定義,而是將焦點放在何種胚胎適合移植,何種胚胎可提供研究。委員會更建議,因粒腺體遺傳疾病研究,而造成基因結構改變之細胞成為胚胎的一部份的情形,應加以禁止。

美國法院於 8 月 9 日判決「隱私權合理期待不及於網際網路用戶資訊」

  在 Freedman v. America Online 一案中,原告 Freedman 使用 AOL(ISP 業者 ) 的電子郵件帳號匿名寄送一封載有「末日近了 (The end is near) 」之郵件給另外兩個康乃迪克州之居民,該郵件之收文者將其視為對於安全威脅之信件並立即報警處理。警員 Young 和警官 Bensey 雖製作了筆錄與提出搜索令 ( 授權令 ) 之申請,然而在將該等文件送交州檢察官辦公室並經同意前, Young 即將該等文件傳真給 AOL 法務部門,一周後 AOL 即提供 Freedman 之姓名、地址、電話號碼與其他許多與原告之 AOL 電子郵件帳號有關之訊息,原告因而提起訴訟,主張提供其帳戶資料之行為侵犯其隱私權,已違反美國憲法修正條文第四條。   法院認為在美國憲法修正條文第四條之意旨下,網路使用者不能合理期待其用戶資訊為其隱私權所及範圍,主要理由為當網路使用者申請使用服務前,用戶本身已在其本身知悉之情況下將其資訊提供給 ISP 業者,使該 ISP 業者得以提供相關服務,且 AOL 已在其使用合約中註明,倘於其用戶或他人受有人身威脅 (physical threat) 之個別案例之情況下 ( 如同本案例事實 ) , AOL 將提供用戶資訊,而「電子通訊隱私權法案 (The Electronic Communications Privacy Act) 」第 2510 條以下條文亦規定,於有人身損害之虞 (the risk of physical injury) 之情況下,用戶資料之揭露即具正當性。

老歌翻唱!手握著作權轉讓證明書便可放心?-簡評智慧財產法院 101 年度民著上字第 9 號判決

新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險

新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。

TOP