基於專利動向分析之專利策略規劃
科技法律研究所
法律研究員 徐維佑
2014年12月23日
壹、專利布局策略目的
無論在企業針對新產品開發、或學研機構研究新興技術時,對於研究方向的判斷,皆應善加利用其他競爭公司、學研機構專利動向最新資訊。以各國專利資料庫為基礎,蒐集其他公司、機構的研究領域,或者與研發成果相關的專利等資料而成的專利地圖(patent map),可構築更完整的智財戰略。
欲將研究成果商業化時,販售排他性產品對於競爭非常重要。因此阻止其他公司製造仿冒品、類似品,甚至競爭品,或者防禦其他公司之侵權告訴,皆必須盡早制定對策,亦即必須掌握該技術領域的智財資訊,才能讓研發活動順利推展。
貳、各國政府公開之專利動向分析
一、英國國家專利藍圖分析報告
英國政府於2014年中,依續公告8大重要技術之專利藍圖分析報告[1],認為專利資訊可提供創新活動高價值之分析觀點,因此該國智慧財產局資訊團隊,透過專利申請資訊分析出全球性專利藍圖,幫助其國內企業與民眾瞭解此8大重要技術專利資訊,並將分析結果納入資金挹注之考量基礎。
專利藍圖分析報告之資料,來源為2013年至2014年間全球專利資料庫中專利公開(Published)之資料,以及諮詢英國智財局各專業技術領域之專利審查員之結果。而專利藍圖分析報告之分析內容,包括專利涵蓋範圍、專利申請排名領先群、專利優先權期間、專利合作開發申請圖、專利技術分析等。
二、韓國R&D專利技術動向調查
韓國R&D專利技術動向調查制度自2005年開始,每年度由與研究發展相關的各部會針對其提出之研發工作,提供研發計畫執行階段中,所研發之技術是否已有先前技術,或是與研發技術類似之專利發展情況等資訊,即以該研發領域之技術不被其它國家競爭對手搶先獲得專利權的目標作為研究人員之研究方向。
而專利技術動向調查之研發課題則由韓國專利廳下韓國智慧財產策略院主管之「e專利國[2]」負責調查,提供專利分析結果的綜合報告,提供各部會與各領域別的專利動向、方向與及各種分析報告,內容包含有政府R&D專利技術動向調查報告、國家專利策略藍圖報告、以及專利分析與相關生產報告等。並根據以上報告提供技術領域別研發計畫方向、挑選出將來商業化運用價值較高之專利。
參、代結論
專利動向分析的資訊為一種判斷的依據,儘管由分析報告所顯示的技術範圍中,判斷要進行哪一種研究時,需要的是研究者的經驗與知識,但專利動向分析有助於篩選出可行的研究範圍,尤其在投入國家資源補助科研計畫時,資源更應有效應用於可行的技術領域,而非早已佈滿專利地雷處。
目前產業研發過程缺乏完善專利布局分析。實際生產產品之企業為避免侵權故意,常忽略申請前檢索工作;雖研究前或研究中調查之專利動向分析,並不能保證研究成果的可專利性,然而該工作對於國家、企業之研究發展實屬必要。透過如英國國家專利藍圖分析報告、韓國R&D專利技術動向調查,由國家公開技術領域共通性專利分析報告,對於企業後續進行技術專利布局,或者研究機構擬定研究發展方向,皆會有莫大的助益,並節省相當的時間與人力成本,值得我國參考。
[1] UK Intellectual Property Office, Eight great technologies: the patent landscapes (2014), https://www.gov.uk/government/publications/eight-great-technologies-the-patent-landscapes (last visited: 2014/10/01)
[2] 韓國e專利國網頁, http://www.patentmap.or.kr/patentmap/front/common.do?method=main(最後瀏覽日:2014/10/01)。
歐盟公布人工智慧法,建立全球首部AI全面監管框架 資訊工業策進會科技法律研究所 2024年07月12日 歐盟理事會於2024年5月22日正式批准《人工智慧法》(Artificial Intelligence Act,下稱AIA)[1],該法於2024年7月12日公告於歐盟的官方公報上,將自8月1日起生效,成為全球首部全面性監管AI的法律框架。 壹、事件摘要 人工智慧技術的應用廣泛,隨著使用情境增加,潛在的風險也逐一浮現。歐盟於2018年就提出「可信任的人工智慧」(Trustworthy AI)的概念[2],認為透過妥善的制度管理人工智慧的研發與使用,即使人工智慧具有多種風險,也可以使民眾享受人工智慧帶來的福祉。因此,歐盟執委會提出全球第一部全面監管人工智慧的法案,為人工智慧的設計、開發、部署、及使用建立適當的規範,希望法律的確定性能促進該技術的創新,並建立各界對於該技術的信心,擴大其採用,使該技術能造福人群。 自從歐盟執委會於2021年4月提出人工智慧法草案以來,其後續發展備受全球矚目,也吸引歐洲的人權組織、學術團體以及大型科技公司的關注。在多方利益關係者的遊說與介入下,該法案一度陷入僵局,其中生成式人工智慧(Generative AI)亦為爭議焦點。歐洲議會和理事會的AIA草案修正版本中,曾經納入生成式AI的定義與監管條款,然最後拍板定案以AI系統與基礎模型為監管對象,並未針對生成式AI。理事會、執委會和歐洲議會經過多次三方會談,終於在2023年12月8日就內容達成協議[3],草案在2024年3月13日交由歐洲議會大會表決,最終以壓倒性的票數通過該法。[4] 貳、重點說明 AIA全文分為13個章節,總計有113個條文以及13個附件。[5]AIA採分階段實施的方式,該法在生效三年後才可能完全實施。[6]本文擬就該法建立的AI監管框架,包括其適用範圍與規範、管理方式、治理組織、實施和配套措施等規定,擇重點說明如下。 (一)規範對象 AIA的規範對象分為兩類,其一為AI系統;另一為通用人工智慧模型(General Purpose Artificial Intelligence Model, GPAI,下稱通用AI模型)。 1. AI系統 為與國際接軌,歐盟修改AIA有關AI系統的定義,使其與「經濟合作暨發展組織」(Organisation for Economic Cooperation and Development,OECD)的定義一致,令該法更具國際共識基礎。AI系統被定義為「一種機器的系統,它以不同程度的自主性運作,在部署後可能展現適應性,並且對於明確或隱含的目標,從接收到的輸入推斷如何產生預測、內容、建議或可能影響實體或虛擬環境的決策等輸出。」[7] AIA設有豁免規定,涉及國安和軍事領域、科學研究和開發目的、純粹個人非專業活動使用的AI系統、以及大部分的免費及開源軟體並不適用AIA規範。免費及開源軟體只有屬於高風險或生成式AI系統、或涉及生物特徵和情緒識別目的,才須遵守AIA規範。[8] 2. 通用AI模型 執委會的草案原本不包含通用AI模型,在歐洲議會和理事會的建議下,AIA最後亦將通用AI模型納入監管。所謂通用AI模型,係指具有顯著通用性的AI模型,它可以勝任各種不同任務的執行,並且可以與下游的系統或應用程式整合。[9] 值得注意的是,AIA只約束已經在歐盟上市的通用AI模型,在上市前用於研究、開發和原型設計活動的通用AI模型並不包括在內。 (二)以風險為基礎的分級管理方式 AIA採取風險途徑監管AI系統和通用AI模型,視潛在風險和影響程度決定義務內容,對於兩者建立不同的分類規則,並針對AI系統整個生命週期進行規劃、建立AI系統和通用AI模型在各階段應符合的要求,由AI價值鏈的參與者分別承擔相應責任,其中以提供者(provider)和部署者(deployer)為主要的責任承擔者。[10] 1. AI系統的分級管理 根據風險程度對系統進行分類,以具有高風險的AI系統為主要規範對象,該類系統在投入市場或使用前必須通過合格評估,並遵守嚴格的上市後規範;而具有不可接受風險的AI系統則禁止使用。另外,AIA還訂有透明性義務,舉凡與人互動、具生成內容能力之AI系統提供者皆應遵守;如果AI產生內容具有深偽(deep fake)效果,其系統部署者還應遵守額外的規定,揭露該內容係人工生成或操縱的結果[11]。 2. 通用AI模型的分級管理 AIA訂有通用AI模型的共通義務[12],並根據模型的能力判定其是否具有系統性風險(systemic risks)。[13]所有的通用AI模型提供者都須公開模型訓練內容的詳細摘要,並遵守歐盟著作權法的規定[14];而具有系統性風險的通用AI模型提供者,還須負擔額外的義務。[15] (三)治理組織 1. AI辦公室 為順利實施AIA,執委會已成立一「人工智慧辦公室」(AI Office,下稱AI辦公室),負責促進、監督AIA落實,它同時也是通用AI模型的監管機構。[16]AIA框架下,會員國市場監管機構僅負責AI系統的監管工作。 2.人工智慧委員會 除了AI辦公室外,還設有一「人工智慧委員會」(AI Board),由歐盟會員國派代表成立,主要負責協調各國的作法、交換資訊、以及提供各國市場監管機構建議。[17] 3.「獨立專家科學小組」與「諮詢論壇」 歐盟層級還有兩個支持性的組織:「獨立專家科學小組」(Scientific Panel of Independent Experts)和「諮詢論壇」(advisory forum),可提供落實AIA規範所需之專業技術知識與實施建議。 獨立專家科學小組的成員係由執委員會指定,執委會將視任務所需的最新科學或技術專業知識進行挑選,該小組最重要的任務在於支援通用AI模型和系統相關規定的實施和執行,包括向AI辦公室通報存在系統性風險的通用AI模型、開發通用AI模型和系統能力評估的工具和方法等。[18] 諮詢論壇成員亦由執委會指定,執委會應顧及商業和非商業利益間的平衡,從AI領域具有公認專業知識的利害關係人當中,尋找適當的人選。諮詢論壇主要任務是應理事會或執委會的要求,準備意見、建議和書面報告,供其參考。[19] 4.會員國內部各自之市場監管機關 在會員國層級,由各國市場監管機關負責督導AIA規定之實施[20],各國並將成立或指定公告主管機關(notifying authority),負責進行公告合格評估機構(notified bodies)評選與指定事宜,日後將由各公告合格評估機構負責AIA下的第三方合格評估業務。[21] (四)實施與配套措施 1.分階段實施 AIA的規定將在該法生效24個月後開始實施,然考慮到歐盟和會員國的治理結構尚在討論中,且業界在法遵上也需要時間調適,因此AIA的部分條文將分階段實施。 (1) AIA通則以及不可接受風險的AI系統禁令在該法生效6個月後即實施; (2) 通用AI模型、第三方認證機構和會員國公告合格評估機構、以及違反AIA的罰則等相關規範,於該法生效12個月後開始實施; (3) AIA附件III清單之高風險AI系統相關義務,要等該法生效36個月後才開始實施; (4) 而AIA生效前已上市之通用AI模型提供者,應在該法生效36個月內,採取必要行動使其模型合乎AIA規定。[22] 2.罰則規定 AIA訂有罰則,在AIA措施正式實施後,違規者可能面臨鉅額罰款[23]。 3.配套措施 由於AIA以建立監管框架為主,相關規定之實施細則或標準,這仍待執委會逐步制定。因此,在AIA各配套辦法提出之前,AI辦公室將以「實踐守則」(codes of practice)[24]和「行為守則」(codes of conduct)之訂定與推動為主,另外又提出「人工智慧公約」,希望藉由此些配套措施協助受AIA規範的各方,使其在最短時間內能順利履行其應盡義務。 (1) 「實踐守則」 實踐守則(codes of practice)針對的是通用AI模型提供者。AI辦公室將鼓勵所有通用AI模型提供者推動和參與實踐守則的擬定,AI辦公室亦將負責審查和調整守則內容,確保反映最新技術及利害關係各方的觀點。實踐守則應涵蓋通用AI模型和具系統性風險的通用AI模型提供者的義務、系統性風險類型和性質的風險分類法(risk taxonomy)、以及具體的風險評估和緩解措施。[25] (2) 「行為守則」 行為守則(codes of conduct)之目的在於推動AIA的廣泛適用,由AI辦公室和會員國共同推動,鼓勵高風險AI系統以外的AI系統提供者、部署者和使用者等響應,自動遵循AIA關於高風險AI的部分或全部要求。AI系統的提供者或部署者、或任何有興趣的利害關係人,都可參與行為準則。[26] (3) 「人工智慧公約」 AIA中的高風險AI系統以及其他重要規定需待過渡期結束才開始適用[27],因此執委會在AIA的框架外,另提出「人工智慧公約」(AI Pact,下稱AI公約)計畫,鼓勵企業承諾在AIA正式實施前,即開始實踐該法規範。 AI公約計畫有兩個行動重點,其一是要提供對AI公約有興趣的企業有關AIA實施流程的實用資訊,並鼓勵這些企業進行交流。AI辦公室將舉行研討會,使企業更了解AIA以及如何做好法遵的準備,而AI辦公室也可藉此收集企業的經驗反饋,供其政策制定參考。 另一個重點是要推動企業承諾儘早開始實踐AIA,承諾內容包括企業滿足AIA要求的具體行動計畫和行動時間表,並且定期向AI辦公室報告其承諾進展;AI辦公室會收集並發布這些報告,此作法不僅有助提高當責性和可信度,亦可增強外界對該些企業所開發技術的信心。[28] 參、事件評析 執委會希望透過AIA提供明確的法律框架,在推動AI創新發展之際,也能確保民眾的安全權利保障,並希望AIA能夠複製GDPR所創造的「布魯塞爾效應」(Brussels Effect),為國際AI立法建立參考標竿,使歐盟成為AI標準的領導者。然AI技術應用的革新發展速度驚人,從AIA草案提出後的兩年內,AI技術應用出現顛覆性的變革,生成式AI的技術突破以及該技術已顯現的社會影響,使得歐盟內部對於AIA的監管格局與力度有了更多的討論,看法莫衷一是。因此,AIA最後定案時,內容有多處大幅調修與新增。 (一)AI系統定義與OECD一致 首先,執委會的原始草案中,強調AI系統的定義方式應根據其關鍵功能特徵,並輔以系統開發所使用之具體技術和方法清單。[29]然AIA最後捨棄詳細列舉技術和方法清單的作法,改採與OECD一致的定義方式,強調AI的技術特徵與運行模式。採用OECD的定義方式固然係因OECD對AI系統的定義更具彈性,更能因應日新月異的AI新技術發展;這樣的作法亦有助AIA與國際接軌、更為國際社會廣泛接受。 (二)規範通用AI模型並課予生成式AI透明性義務 其次,生成式AI衍生的眾多問題和潛藏風險引發全球熱議,在AIA的三方會談過程中,生成式AI的管制也是談判的焦點議題。原本外界以為歐盟應該會在AIA嚴加控管生成式AI的應用,尤其是「深偽」(deep fake)技術的應用。然而「深偽」技術在AIA的分類方式下,卻僅屬於有限風險的系統,雖負有透明性義務,卻僅需揭露若干資訊即可。「深偽」的問題暴露出生成式AI系統的監管難題,最後AIA拍板定案,僅在透明性義務的章節中提及生成式AI,並且以技術描述的方式取代一般慣用的「生成式AI」(Generative AI)一詞。 歐盟另闢途徑管理生成式AI。AIA的原始草案僅針對AI系統,並無管制AI模型的條文[30],然有鑑於生成式AI模型係以通用AI模型開發而成,因此AIA新增「通用AI模型」專章,從更基礎的層次著手處理生成式AI的問題。在AIA生效後,歐盟境內的通用AI模型將統一由歐盟的AI辦公室負責監管。考慮到生成式AI應用的多樣性,歐盟從通用AI模型切入、而不針對生成式AI進行管理,可能是更務實的作法。 (三)推出多項配套措施強化AI治理與法遵 最後,歐盟在AIA框架外,針對不同的對象,另建多項配套措施,鼓勵非高風險AI系統提供者建立行為守則、推動通用AI模型提供者參與「實踐守則」的制定和落實、並號召AI業者參與「AI公約」提早遵循AIA的規定。這些措施可指導相關參與者採取具體的步驟與作法達到合規目的,俾利AIA之實施獲得最佳成效。 AIA眾多執行細則尚待執委會制定,包括高風險AI清單的更新、通用AI模型的分類方式以及標準制定等,這些細節內容將影響AIA的實際執行。我國應持續關注其後續進展以因應全球AI治理的新格局,並汲取歐盟經驗作為我國AI監管政策與措施的參考。 [1]Regulation Of The European Parliament And Of The Council Laying Down Harmonised Rules On Artificial Intelligence (Artificial Intelligence Act) And Amending Certain Union Legislative Acts, 2024, OJ L( 2024/1689), http://data.europa.eu/eli/reg/2024/1689/oj (last visited July. 12, 2024). [2]High-Level Expert Group on AI of the European Commission, Ethics Guidelines for Trustworthy Artificial Intelligence, April 8, 2019. https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (last visited June 25, 2024). 該小組在2018年12月提出草案並徵求公眾意見,並於2019年4月正式提出該倫理指引。 [3]European Parliament, Press Release: Artificial Intelligence Act: deal on comprehensive rules for trustworthy AI, Dec. 9, 2023, https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai (last visited June 25, 2024). [4]European Parliament, Press Release: Artificial Intelligence Act: MEPs adopt landmark law, March 13, 2024, https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-intelligence-act-meps-adopt-landmark-law (last visited June 25, 2024). [5]European Parliament, Position of the European Parliament adopted at first reading on 13 March 2024 with a view to the adoption of Artificial Intelligence Act, https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.html# (last visited June 25, 2024). [6]AIA, art. 113. [7]AIA和OECD對AI系統的定義的差異僅在於用字遣詞及語句編排方面,兩者在意涵上其實是一致的。See AIA, art. 3(1). [8]AIA, art. 2. [9]AIA, art. 3(63). 執委會原先認為,AI模型無法獨立使用,僅需鎖定AI系統監管即可,然而生成式AI衍生的諸多問題,令人擔憂放任通用AI模型發展可能產生無法預期的後果,因此歐盟最後決定在AIA條文中加入通用AI模型規範。 [10]但AIA訂有豁免適用的規定,包括國安和軍事領域、科學研究和開發目的、以及純粹個人非專業活動使用的AI皆不受AIA約束。AI價值鏈的其它參與者還包括進口商、授權代表、經銷商等。See AIA, art. 2. [11]AIA, art. 50. [12]AIA, art. 53. [13]AIA, art. 51. 「系統性風險」是指通用AI模型特有的高影響力所造成的風險。由於其影響範圍廣大,或由於其對公共健康、安全、公眾的實際或合理可預見的負面影響,進而對歐盟市場產生重大影響。See AIA, art. 3(65). [14]AIA, art. 53. 在上市前用於研究、開發和原型設計活動的通用AI模型除外。 [15]AIA, art. 55.例如進行模型評估、進行風險評估和採取風險緩解措施、確保適當程度的網路安全保護措施。 [16]Commission Decision On Establishing The European Artificial Intelligence Office, C(2024) 390 final, 2024, https://ec.europa.eu/newsroom/dae/redirection/document/101625 (last visited June 25, 2024). [17]AIA, art. 65. [18]AIA, art. 68. [19]AIA, art. 67. 該條款規定,歐盟的基本權利局(The Fundamental Rights Agency)機構、歐盟網路安全局(The European Union Agency for Cybersecurity)、歐洲標準化委員會 (CEN)、歐洲電工標準化委員會 (CENELEC) 和歐洲電信標準協會 (ETSI) 應為諮詢論壇的永久成員。 [20]AIA, art. 70. [21]AIA, art. 28 & 29. [22]AIA, art. 113. [23]AIA, art. 99. [24]AIA, art. 56. [25]AIA, recital 116 & art. 56. [26]AIA, art. 95. [27]AIA有關治理組織、罰則、通用AI模型的規定於該法生效12個月後才開始實施,屬於附件二範圍的高風險AI系統的相關規定則遲至該法生效36個月後才實施。AIA, art. 113. [28]European Commission, Shaping Europe’s digital future: AI Pact, (last updated May 6, 2024) https://digital-strategy.ec.europa.eu/en/policies/ai-pact (last visited June 25, 2024). [29]Proposal for a Regulation Of The European Parliament And Of The Council Laying Down Harmonised Rules On Artificial Intelligence (Artificial Intelligence Act) And Amending Certain Union Legislative Acts, COM(2021) 206 final, recital (6). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 (last visited June 25, 2024). [30]執委會的原始草案中,僅於第四章關於AI系統透明性的條文中提及具有「深偽」(deep fake)能力的系統應負揭露義務。
歐盟議會否決法國所提出切斷網路連接的修正條款法國政府基於保護電影、音樂等產業,在2009年3月提出將採取「三振法案」(Three-strikes law),對於不法使用網路下載音樂和檔案者,祭出明確的管制。第一階段違法者將會收到電子郵件警告,第二階段會收到書面之警告,第三階段將切斷該網路連接最長1年。 但這個提議在2009年4月遭到法國議會否決,有議員表示這項規定是「危險、無用、無效率且對民眾有相當大之危險。」消費者團體則表示,「無辜的民眾將會受到處罰,而駭客等真正的犯罪者則可以利用入侵他人之帳號規避法規,而且,該架構顯然缺乏配套的監督機制。」 無獨有偶的是,歐洲議會(European Parliament)也在同年11月針對歐盟電信信改革(EU Telecoms Reform)之討論,駁回該議案。議會認為,對人民通過網路使用服務和應用而進行的網際網路連接行為,在採取的措施時,應該尊重基本的人權和自由。這些限制權利的手段必須符合民主社會的法規,必須有效、公平和公正,比如通過法院進行審理等。而法國所提之切斷網路連接的三振法案與此原則不符。
歐盟生醫研究積極籌組歐盟研究基礎設施聯盟(ERIC)歐盟自2009年6月通過並於同年8月生效之「第723/2009號歐盟研究基礎設施聯盟法律架構規則」(COUNCIL REGULATION (EC) No 723/2009 of 25 June 2009 on the Community legal framework for a European Research Infrastructure Consortium (ERIC),簡稱第723/2009號規則),其乃希望能促進各會員國間各自分散的研究基礎設施(Research Infrastructures,簡稱RIs)之資源凝聚及共享,讓原本僅為設施設備的RIs整合起來,透過由3個以上歐盟會員國作為某特定ERIC成員之方式,依第723/2009號規則向歐盟執委會提出ERIC設立申請,經執委會同意後,ERIC即可取得獨立法律地位及法律人格,以自己名義獲得、享有或放棄動產、不動產及智慧財產,以及締結契約及作為訴訟當事人,並得豁免無須被課徵加值稅(value added tax)和貨物稅(excise duty)等稅賦。歐盟創設ERIC法律架構之目的,是希望能透過國際合作、彙集國際資源,在歐盟建立起頂尖研發環境,吸引跨國研發活動集中與進駐,利用規模化的大型研究基礎設施導引出世界級研發。 截至目前,由奧地利、比利時、捷克、德國、荷蘭等國作為成員及瑞士作為觀察員所建立之「歐盟健康、老化及退休調查」(The Survey of Health, Ageing and Retirement in Europe,簡稱SHARE),乃是歐盟首次提出申請且正式設立之ERIC。SHARE-ERIC乃一大型的人口老化多國研究資料庫,並已收錄45,000筆以上年齡50歲以上個人之健康、社經地位及社會家庭網絡之跨領域及跨國籍資料,SHARE-ERIC之資料分析除將有助歐盟國家就老化社會之福利系統為規劃,更預期將成為推動其活動及健康老化歐盟創新伙伴試行計畫之重要基石。 除此之外,自2008年起由歐盟撥款500萬歐元籌備成立之「生物銀行及生物分子資源研究基礎機構」(Biobanking and Biomolecular Resources Research Infrastructure,簡稱BBMRI),從2008年至今(2011)年1月底3年籌備期間,已募得30個以上國家之53個會員聯盟以及280個聯繫組織(大部分為生物銀行),預計將建立成為最大的泛歐生物銀行,病患及歐盟人口之樣本與資料之介面,以及頂尖生醫研究之介面,且為了要BBMRI-ERIC,BBMRI指導委員會業已擬定「BBMRI-ERIC備忘錄」提供予有興趣之會員國家簽署,希望能在今年底前成立BBMRI-ERIC。
從日本農業數據協作平台WAGRI擴建為智慧食物鏈歷程談因應疫情之智慧化措施從日本農業數據協作平台WAGRI擴建為智慧食物鏈歷程談因應疫情之智慧化措施 資訊工業策進會科技法律研究所 劉宥妤 副法律研究員 2020年10月8日 壹、前言 我國近年積極發展智慧農業,一般農企業或農民發展智慧化過程中,面臨高額的設備建置、維護成本使其卻步,因此創設新的農業數據流通運用商業模式將能降低智慧化門檻,成為智慧農業普及落地之關鍵。本文將研析與我國農情相近之日本推動智慧農業數據流通運用之策略,作為我國智慧農業發展之借鏡。 日本與我國同樣面臨從事農業者高齡少子化以致後繼無人,日本政府於2016年提出Society 5.0概念,期待以資通訊(Information and Communication Technology,ICT)技術帶動發展社會各個領域[1],於農業領域利用農業ICT可使資深農民內隱知識成為外顯化數據而利於經驗傳承。 日本當時民間企業已有開發眾多ICT系統服務技術,不同業者因未進行合作,其提供的系統服務互不相容,ICT系統服務產出之數據格式、標準不一;另一方面,公部門(研究、行政機關)內的資料亦各自分散管理。為促進農業數據整合管理、流通運用,日本農業數據協作平台(WAGRI[2])因而催生。 貳、日本農業數據協作平台WAGRI發展歷程 一、日本首相指示建構數據平台 日本政府於2017年3月24日召開第6回「未來投資會議[3]」,作為主席之首相安倍晉三提到:為了能栽培出安心可口的作物,官方、民間應互相拿出作物生長狀況、氣候、地圖等更新資料,並且於2017年年中建構無論任何人均可簡易利用的資訊協作平台,必要數據須完全公開,交由IT綜合戰略本部[4]將前述平台規劃具體化。 於2017年6月9日召開的第10次未來投資會議中,公布「未來投資戰略2017[5]」,以實現「Society 5.0」為目標,其中提到於農、林、水產業領域,奠基於公部門保有之農業、地圖、氣象等公開化資訊,能夠共有活用各種數據的「日本農業數據協作平台(下稱WAGRI)」將於2017年開始建構。 二、WAGRI試營運 WAGRI由內閣府「策略性創新創造計畫(Strategic Innovation Promotion Program,SIP)」第1期計畫11個課題之一「次世代農林水產業創造技術」[6]支持(管理法人為農研機構[NARO][7]),由慶應義塾大學SFC研究所[8]建置,與參與SIP研究計畫聯盟,包括農業生產法人、農機製造商、ICT供應商、大學與研究機關等(例如日本IT企業NTT [Nippon Telegraph and Telephone Corporation]、富士通[Fujitsu Limited];農機大廠久保田[Kubota Corporation]、洋馬[Yanmar Holdings Co., Ltd.][9])共23個組織一同建置,具備「合作」(打破不同系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式得以促成數據交換利用商業模式建立)、「提供」(由公私部門提供土壤、氣象等數據得以促成數據取得和後續流通)三大功能之WAGRI,試營使用時已有實作案例指出,活用WAGRI後在數據蒐集與利用上的勞力與時間成本明顯縮減[10]。 三、WAGRI自主營運 2019年4月以農研機構(NARO)為營運主體,正式營運開始原本由SIP計畫支援,轉由農研機構(NARO)正式營運。 今(2020)年4月更新WAGRI平台利用資訊自主營運後,原先不收費方式已變更,欲利用WAGRI之機關依據以下兩種利用平台方式,須繳納不同的費用[11]: 1. 數據利用者(利用WAGRI數據者)、數據利用暨提供者(利用WAGRI數據且提供數據予WAGRI者) 平台利用月費5萬日圓 若利用有償數據時,須另外支付數據使用費 2. 數據提供者(提供數據予WAGRI者) 平台利用月費3萬日圓 但書:若僅提供之數據屬於無償者,原則上不需要繳納平台利用費 參、因應疫情WAGRI擴散之應用 日本SIP第2期計畫12個課題之一「智慧生物產業與農業基礎技術[12]」所支持的「智慧食物鏈聯盟[13]」,將擴張SIP第1期計畫所建置之WAGRI,建構智慧食物鏈平台(簡稱WAGRI-dev),智慧食物鏈聯盟主要任務為建構智慧食物鏈(預計於2025年開始商業化服務),促使食物的加工、流通、銷售、出口相關數據可相互運用,以作為日本生鮮物流之基礎,將架構於WAGRI之基礎擴建為WAGRI-dev。 為因應疫情,今(2020)年4月7日聯合國糧農組織(Food and Agriculture Organization of the United Nations,FAO)和世界衛生組織(World Health Organization,WHO)聯合發佈「針對食品安全監管部門防控新型冠狀病毒肺炎(COVID-19)與食品安全的臨時指南[14]」,由日本SIP計畫課題「智慧生物產業與農業基礎技術」之智慧食物鏈聯盟,基於前述指南制定「新冠肺炎(COVID-19)對應指針」;同樣作為前述課題一環的「日本食品指針協作系統(簡稱WAGRI.info)」[15]為因應疫情而產出相對應的應用。 WAGRI.info,於7月13日開放網站受理食品、農產品相關業者進行食安登錄,不限於符合新冠肺炎對應指針,符合既有之品質・安全管理指針(例如:危害分析重要管制點[Hazard Analysis and Critical Control Points,HACCP])等即可申請登錄,並具備企業檢索功能供一般大眾使用。 WAGRI.info為WAGRI-dev之一環,未來將陸續添加多樣數據協作機能、防止數據竄改與不法入侵等措施。日本政府從原本期待藉由擴張WAGRI打造出從生產,以至加工、流通、銷售、出口等,建構一世界首度智慧食物鏈之外,因應疫情增加相關機能以建構食安資訊網。 我國亦有智慧農業數據相關平台提供OPEN DATA介接功能[16]、開發食安溯源整合應用系統,提供校園午餐食材流向資料,日本WAGRI整合與共享數據的模式可作為我國發展智慧農業活用數據之借鏡外,WAGRI.info之作法亦可供國內因應疫情之食安政策參考。 [1]〈科学技術基本計画〉,內閣府網站,https://www8.cao.go.jp/cstp/kihonkeikaku/index5.html(最後瀏覽日:2020/10/08)。 [2]WAGRI代表的是作為一數據平台 ,由各式的數據與服務連環成一個輪,調和各個社群、促進「和」諧,期待引領農業領域之創新,由WA+AGRI組合而成(WA是和的日文+農業AGRI),WAGRI網站,https://wagri.net/ja-jp/(最後瀏覽日:2020/10/08)。 [3]作為日本政府實施經濟政策與實現成長戰略之指揮總部所設置的日本經濟再生本部,從2016年起約每月召開「未來投資會議」,討論成長戰略與加速社會結構改革以擴大對未來之投資。〈日本経済再生本部〉,首相官邸網站,http://www.kantei.go.jp/jp/singi/keizaisaisei/(最後瀏覽日:2020/10/08)。 [4]日本政府積極展開推動活用IT科技做為解決各領域社會議題之手段,從2000年日本施行IT基本法(高度情報通信ネットワーク社会形成基本法),於隔年依法設立IT戰略本部(高度情報通信網路社会推進戦略本部),2013年依據政府CIO(Government Chief Information Officer)法於内閣官房設立「內閣資訊技術政策局局長(内閣情報通信政策監,簡稱政府CIO)」,IT戰略本部與政府CIO統整為IT綜合戰略本部(高度情報通信ネットワーク社会推進戦略本部,IT総合戦略本部),以迅速推動促成高度資通網路社會的重點政策,打破省廳的縱向斷層,整個政府橫向串聯。〈高度情報通信ネットワーク社会推進戦略本部(IT総合戦略本部)〉,首相官邸網站,https://www.kantei.go.jp/jp/singi/it2/,(最後瀏覽日:2020/10/08)。 [5]許祐寧,〈日本首相官邸舉行第10次未來投資會議,提出日本「未來投資戰略2017」以實現「Society 5.0」為目標〉,資策會科法所網站,2017/08,https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&i=72&d=7844(最後瀏覽日:2020/10/08)。 [6]內閣府聚焦「Society 5.0」重要課題,結合未來投資會議施政重點領域,編列年度科技預算,創設並推動「策略性創新創造計畫(戦略的イノベーション創造プログラム,Strategic Innovation Promotion Program,SIP),SIP第1期計畫為2014年度到2018年度共5年期的計畫。〈戦略的イノベーション創造プログラム(SIP:エスアイピー)〉,內閣府網站,https://www8.cao.go.jp/cstp/gaiyo/sip/index.html(最後瀏覽日:2020/10/08);邱錦田(2017),<日本實現超智慧社會(社會5.0)之科技創新策略>,國家實驗研究院網站,https://portal.stpi.narl.org.tw/index/article/10358(最後瀏覽日:2020/10/08)。 [7]農研機構,日本國立研究開發法人農業・食品產業技術綜合研究機構The National Agriculture and Food Research Organization,簡稱NARO。 [8]位於慶應義塾大學湘南藤澤校區的政策・媒體研究科、綜合政策學系、環境情報學系的附屬研究所,簡稱SFC研究所,為推動日本智農發展之重要學研單位,任職於該所教授神成淳司為WAGRI研究負責人,同時身為內閣官房副政府CIO、IT綜合戰略室長代理,促成「農業情報創成·流通促進戰略」產出,亦身兼WAGRI協議會會長、NARO 農業共通資訊總監之角色,促成WAGRI與日本智慧農業實證計畫串接,其為日本政府推動農業數據流通之重要角色,促進日本智農發展不餘餘力。SFC研究所網站,https://www.kri.sfc.keio.ac.jp/(最後瀏覽日:2020/10/08)。 [9]IoTNEWS,〈マイクロソフト、産官学連携で構築する「農業データ連携基盤」でMicrosoft Azureを活用したデジタル農業を実現〉,2017/05/15,https://iotnews.jp/archives/56366(最後瀏覽日:2020/10/08)。 [10]神成淳司,〈ICTが社会を変える : 農業データ連携基盤の展開と未来図〉,《技術と普及 : 全国農業改良普及職員協議会機関誌》, 12月號,頁24-26(2017);農林水産省技術政策室,〈農業データ連携基盤の構築について〉,2018/09,http://www.affrc.maff.go.jp/docs/smart_agri_pro/attach/pdf/smart_agri_pro-15.pdf (最後瀏覽日:2020/10/08)。 [11]〈農業データ連携基盤(WAGRI)の2019年度以降の利用について〉,2019/4/2,農研機構網站,https://www.naro.affrc.go.jp/project/research_activities/laboratory/rcait/130311.html(最後瀏覽日:2020/10/08);〈農業データ連携基盤(WAGRI)利用申請〉,農研機構網站https://www.naro.affrc.go.jp/laboratory/rcait/wagri(最後瀏覽日:2020/10/08)。 [12]同註6,SIP第2期計畫為2017年度末到2022年度共約5年期的計畫。 [13]智慧食物鏈之建構為該課題的主要研究之一,智慧食物鏈聯盟成員包括:由内閣官房、内閣府、農林水產省等政府組織作為觀察員,由地方自治體、學術研究機關、農業生產法人、批發市場、中盤商、物流業、零售業、製造商、ICT供應商等超過70個組織參與(聯盟代表為慶應義塾大學SFC研究所),參註13;〈「SIP第2期 「スマートバイオ産業・農業基盤技術」シンポジウム2020 -新たなスマートフードチェーンの構築をめざして-」〉,2020/03/10,WAGRI網站,https://wagri.net/ja-jp/News/generalnews/2020/20200310(最後瀏覽日:2020/10/08)。 [14]See FOOD AND AGRICULTURE ORGANIZASTION OF THE UNITED NATIONS [FAO], COVID-19 and Food Safety: Guidance for Food Businesses: Interim guidance (Apr. 7, 2020), http://www.fao.org/family-farming/detail/en/c/1275311/(last visited Oct. 8, 2020).〈聯合國糧農組織和世界衛生組織聯合發佈針對食品安全監管部門防控新冠肺炎(COVID-19)與食品安全臨時指南〉,中國大陸檢驗檢疫科學研究院網站,http://www.caiq.org.cn/kydt/902625.shtml(最後瀏覽日:2020/10/08)。 [15]WAGRI.info 事務局,〈「WAGRI.info(食品ガイドライン連携システム)」のWEBサイト開設、事業者登録受け付け開始〉,2020/07/13,https://kyodonewsprwire.jp/release/202007131927(最後瀏覽日:2020/10/08);日本食品指針協作系統WAGRI.info網站,https://www.wagri.info/(最後瀏覽日:2020/10/08)。 [16]智慧農業共通資訊平台網站,https://agriinfo.tari.gov.tw/(最後瀏覽日:2020/10/08);〈智慧農業4.0共通資訊平台建置(第二期)成果發表會〉,2019/12/12,智慧農業網站,https://www.intelligentagri.com.tw/xmdoc/cont?xsmsid=0J141518566276623429&sid=0J338358950611186512(最後瀏覽日:2020/10/08)。