美國擬將開放中國家禽類產品之進口

  美國近期可能開放進口中國大陸將已處理或煮熟的家禽類產品至美國。美國農業部(The U.S. Department of Agriculture)表示中國若將處理過之家禽類產品出口至美國販售,前提是必須遵循美國相關食品進口規範完成妥當的進口申報程序,並且在中國所提出之出口健康認證(export health certificate)中,證明該家禽類產品有確實在適當的溫度等處理過程中進行妥善處理。

  美國農業部食品安全及監督服務部門(Food Safety and Inspection Service, 簡稱FSIS)之相關負責官員於2014年6月初在美國國會中國事務執行委員會(Congressional-Executive Commission on China, 簡稱CECC)所舉行的聽證會(hearing)中指出,中國已經將出口健康認證提交給FSIS及動物植物健康監督服務(Animal and Plant Health Inspection Service, 簡稱APHIS)進行審核。在聽證會中,最讓美國負責官員顧慮是否通過開放中國進口家禽類產品之因素在於中國鬆懈的法律規範及其政府的貪汙問題,對於所出具的出口健康認證報告之確實性亦有待考證。美國負責的相關人員建議,中國大陸在產品製造過程的透明度是對於出口健康認證最重要的部分,能夠說服美國相信中國大陸對於食品及藥物安全在管理上的謹慎。

  另外一個需要注意的地方在於食品原產地之標示(country-of-origin labeling,簡稱COOL)。在美國食品市場中,若食品大部分的成分來源是在美國境內處理的,則該食品會有「美國產品」(product of U.S.A.)之標示,但對於何謂「美國境內處理的食物」仍沒有明確的標準,對於國外進口美國的產品,在美國經過重新包裝或加工,則依據COOL相關規範,應標示該產品為「美國產品」。因此,在此條件下,若美國允許中國進口經過中國當局出口健康認證的家禽類產品,若進口至美國後,又在美國境內經過重新加工或是包裝,則該食品之COOL將會顯示該食品來自美國,而非出產自中國大陸。這樣的結果恐將會讓美國食品標示出現不完全精確之結果,也會讓消費者開始顧慮其購買的食品來源的顧慮及食品安全的可信度,美國將必須對進口食品的安全管控上建立更嚴謹的規範措施。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國擬將開放中國家禽類產品之進口, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6810&no=64&tp=1 (最後瀏覽日:2025/12/28)
引註此篇文章
你可能還會想看
歐盟監察官日前指出,ISP業者的流量管理可能違反資料保護及隱私法

  歐盟資料隱私保護監督官(European Data Protection Supervisor, EDPS)Peter Hustinx呼籲歐盟,儘速建立專家小組,制定指導原則,將資料保護以及隱私原則納入網路中立原則中(Network Neutrality)。   網路中立原則原係要求對於網路服務提供者之間不應有所歧視,應平等對待所有資料。但是,在符合歐盟法規下,ISP業者亦得針對網路內容提供者或終端使用者,以不同收費方式管制網路流量。判斷的準據,則以使用者在網路上傳遞的個人訊息為主。調查官Hustinx在其意見書中指出,調查使用者傳遞的訊息可能會背離歐盟資料與隱私保護相關法律。   根據歐盟的隱私及電子通訊指令(Privacy and Electronic Communication Directive),ISP業者在某些條件下,得以促進通訊傳輸為目的,處理個人資料,但是必須取得使用人同意。這項指令亦要求ISP業者必須採取適當的技術、組織措施以確保資料的安全。承此,Hustinx就網路中立性所提出的意見,即為前述指令之例外,亦即ISP業者在確保網路順暢及監督是否有干擾時,其監控行為無須使用者同意。但若為限制某些服務,例如檔案交換,而進行的監控行為,則不在此限。再者,該同意必須免費的、明確的並且使用者得了解的。Hustinx提出的指導原則強調確保網路使用者被適當的告知,進而了解該項個人資料監控的意義而做出同意與否的決定。同時,ISP業者在進行調查時,亦應謹慎為之,不違反比例性原則。

國際能源總署發布「二氧化碳封存資源及其開發」手冊,協助能源部門及利害關係人了解地質封存效益、風險及社會經濟相關考量

國際能源總署(International Energy Agency, IEA)於2022年12月發布「二氧化碳封存資源及其開發」手冊(CO2 storage resources and their development: An IEA CCUS Handbook),概述地質封存之效益、風險與社會經濟相關考量,並補充2022年度7月份的碳捕捉、利用及封存(Carbon Capture, Utilization and Storage, CCUS)法律和監管框架。該手冊架構可分為九個章節,重要章節包含:碳封存資源概述、碳封存開發生命週期、評估階段開發、風險管理、商業化、以及提供具體建議予決策者或私營部門。 由於CCUS涉及複雜管理及營運模式,IEA為決策者確立五個總體行動,簡述如下:(1)識別封存資源並提供必要資料:現有的地質資料是寶貴的起點,政府可以將現有資料數位化並建置資料庫,便於私部門獲取資訊。(2)確保法律與管制框架符合CCUS需求:政府應全面盤點既有法制體系是否到位,並應解決下列幾個關鍵問題:碳封存特定責任與風險、建立明確與適當的許可流程、地下孔隙空間的所有權、案場管理要求(如監控、關閉等)。(3)制定支持碳封存的政策:如將CCUS納入國家能源及氣候計畫、制定CCUS路線圖以協調發展策略、進行全面資源評估、制定獎勵措施(如獎勵資金、稅收抵免、可交易的憑證、鼓勵降低成本的創新計畫、風險緩解措施、碳定價等)。(4)支持先驅者並促進投資:產業先驅者時常面臨發展尚未成熟的開發環境或法制體系,因此建議政府得給予先驅者特定的獎勵措施。(5)支持發展CCUS的技術、專業能力:鼓勵石化與天然氣產業朝向CCUS轉型,如提供相關知識並培養相關技術,支持持續就業並避免人才流失等。

著名商標之淡化保護 v.s. 嘲諷性使用著名商標之言論自由保障-從美國商標法及判決評析

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

TOP