澳洲財政部發佈群眾募資法制框架選項之諮詢文件

  2014年12月澳洲財政部就股權式群眾募資(Crowd-Sourced Equity Funding, CSEF)對外發佈政策框架選項的諮詢文件,為使新創企業容易對廣大的中小投資者籌集資金,該稿件承認政府需要採取行動,以克服現有的監管障礙,以利在澳洲廣泛的使用群眾募資這項工具。

提出討論文件的三個政策選項包括:
一、 公司和市場諮詢委員會(CAMAC)在2014年6月提出的法制框架。
二、 在2014年4月份於紐西蘭生效施行的紐西蘭模式(New Zealand model)的法制框架。
三、 維持現狀。

  上述方案各具特色及優缺點,在公司和市場諮詢委員會(CAMAC)的提案中,建議專注於修改聯邦公司法,創造一類特殊的豁免上市公司(不需召開年度股東大會、提供經審計之財務報告等),且限制符合條件之小型企業才能納入,此外,設定200萬美元的募資上限,並可在12個月內在此範圍內提高募資;在中介機構部分,需持有澳大利亞金融服務執照(AFSL),對於盡職調查(Due diligence)所承擔的責任要求較低,須提供風險警告予參與群眾募資的投資者,且禁止提供其投資諮詢和貸款;對於投資者之規定,則設有個案均僅能投資2,500澳幣的上限以及12個月內投資股權式群眾募資,總金額不得超過10,000澳幣的限制。

  若選擇第二方案,即使用已於2014年4月生效的紐西蘭法制框架,與第一方案相較具有諸多相似之處。然而,兩制間也存有顯著的差異,包括紐西蘭模式並未特別創設一類豁免上市公司、也未將進行股權式群眾募資的公司限制於小企業;對中介機構平台的收費標準不設限制,資訊揭露要求亦較低;而對參加投資者的投資金額限制原則上是近乎相同的。

  如果選擇第三個維持現狀方案,在現行法制下意味著群眾募資起始時將面臨50名非員工股東的上限、股份公開報價禁令的限制,設立後須負擔如定期發佈經查核之財報等較一般私有企業更繁重的公司治理要求,此外,中介機構如群眾募資平台等也必須擁有澳大利亞金融服務執照(AFSL)。

  諮詢文件訂立2014年12月8日至2015年2月6日這段期間內,向大眾公開徵求建議,並要求各利害關係人如中介機構,包括創投基金與群眾募資平台之意見。以推動群眾募資法制化,並尋求進一步的磋商出可能的立法草案,在確保減少監管障礙與保持充足投資者保護之間取得適當的平衡。可預期的未來這一年群眾募資的法制架構將在澳洲逐漸明朗化。

相關連結
※ 澳洲財政部發佈群眾募資法制框架選項之諮詢文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6815&no=64&tp=1 (最後瀏覽日:2024/11/25)
引註此篇文章
你可能還會想看
以色列發布人工智慧監管與道德政策

以色列創新、科學及技術部(Ministry of Innovation, Science and Technology)於2023年12月17日公布以色列首個關於人工智慧的監管和道德政策,在各行各業將人工智慧作為未來發展方向的趨勢下,以多元、協作、原則、創新的理念為其導向,為了化解偏見、人類監督、可解釋性、透明度、安全、問責和隱私所帶來的衝擊,以色列整合政府部門、民間組織、學術界及私部門互相合作制定政策,以求解決人工智慧的七個挑戰,帶領以色列與國際接軌。 該人工智慧政策提出具體政策方向以制定措施,其中具有特色的三項為: 1. 軟性監管:人工智慧政策採取軟性監管制度,以OECD人工智慧原則(OECD AI Principles)為基礎,採行制定標準、監督與自律等方式促進人工智慧永續發展,注重以人為本的道德原則,強調創新、平等、可靠性、問責性。 2. 人工智慧政策協調中心(AI Policy Coordination Center):邀集專家學者成立跨部門的人工智慧政策協調中心,進行人工智慧政策研議,向政府部門監管提出建言,為人工智慧的開發使用建立風險管理,並代表國家參與國際論壇。 3. 公眾參與及國際合作:政府機關與監管機構舉辦人工智慧論壇,提出人工智慧的議題與挑戰,邀請相關人士參與討論,並積極參與國際標準制定,進行國際合作。 我國科技部在2019年邀集各領域專家學者研議提出「人工智慧科研發展指引」,強調以人為本、永續發展、多元包容為核心,以八大指引為標竿,推動人工智慧發展。我國已有跨部會溝通會議對於人工智慧法制政策進行研討,可觀察各國軟性監管措施作為我國人工智慧風險管理及產業政策參考,與國際脈動建立連結。

法國高等教育暨研究部宣布額外投資新創企業培育計畫,強化產業競爭力與發展深度技術

為強化產業競爭力與發展深度技術,法國高等教育暨研究部(Ministère de l'enseignement supérieur et de la recherche)於2023年1月9日宣布將額外投資5億歐元,以培育更多的研究型新創企業。 基於2021年10月12日法國總統宣布的《法國2030投資計畫》(France 2030),法國政府將於五年內投入540億歐元於新創相關事務,且目前已於2022年達到成立25間獨角獸公司的中期目標。為進一步提高學研機構以研發成果衍生新創之數量,讓新創公司數量成長2倍,法國高等教育暨研究部部長Sylvie Retacleau與法國產業部(Ministre chargé de l'Industrie)部長Roland Lescure提出以下三大行動,並額外投資5億歐元執行: (1)建立25個大學創新中心(Pôles Universitaires d'Innovation, PUI):法國政府將投入1.6億歐元,在大學網站上提供創新戰略、單一治理及敏捷方法,藉此激發研發團隊潛力及創意。PUI將在不額外增設法律規範之情況下,與現有政策結合推動上述措施。 (2)透過既有措施推動深度科技:透過i-Lab、法國科技新興獎學金、深度技術發展援助計畫等現有措施,以及增設法國科技實驗室獎學金,加速深度技術發展計畫。此外,未來也將提供6500萬歐元的補助。 (3)加強推廣研究工作及專題研究計畫(Programmes et équipements prioritaires de recherché, PEPR)成果:未來法國政府將投入2.75億歐元,挑選17項研究成果,建立評估研發成果之檢測及支援能力,並依領域性質,研究各領域專利證書、標準化和相關法規。

歐盟科技倫理委員會公布和成生物學ELSI意見

  歐盟科學與新科技倫理委員會(European Group on Ethics in Science and New Technologies, EGE)在今(2009)年11月18日公布合成生物學(Synthetic Biology)公布相關之倫理、法制與社會議題之意見,其中指出合成生物學具有可大幅降低生技藥品生產成本的極大潛力,但也可能帶來的風險,故應予注意。     對很多人來說,合成生物學是一個相當新穎的概念,經濟合作發展組織(Organisation for Economic Co-operation and Development , OECD)在其所公布的2030生物經濟發展議程中,將其列為最具有發展潛力的新興生物技術之一,近來更被歐美先進國家視為生物技術產業的未來重點發展方向。     根據OECD的定義,所謂合成生物學,是以工程方法為基礎,以改進微生物的新興領域,此技術使設計與建構新生物元件(part)、裝置(device)及系統(system),及對於既存的自然生物系統,使其更具有使用性。合成生物學的目的,在於藉由設計細胞系統,使其具備特定功能,從而消除浪費細胞能量之非期待的產物,以增進生物效率。目前合成生物學與市場較為接近的案例,乃一種將青蒿(sweet wormwood herb)、細菌與酵素等基因、分子路徑(molecular pathway)作結合,製造出可以生產治療瘧疾(malaria)的青蒿酸之細菌,此項開發成功突破過去僅能透過植物青蒿獲得,並產量有限的瓶頸。     正由於看好和成生物學的發展潛力,美國、英國與歐盟都開始對此項技術可能帶來的倫理、法制與社會爭議進行評估,歐盟EGE更公布意見以作為未來訂定法規範時的參考。EGE在意見中表示合成生物學使用於能源技術、生物製藥、化學工業或材料科學等都深具前景,故建議歐盟執委會應對此技術發展給予支持,並在歐盟架構計畫下,以產業利用為前提,給予經費的支持;然也必須重視其ELSI問題,包括使用合成生物產品的安全性、對環境的長期影響、惡意使用之防免、專利與公共財的爭議等,為了解決此等問題,其也要求各會員國必須針對合成生物學的各種議題,加強與民眾、利害關係人及社會的對話。由於我國一直將生技產業視為發展重點,合成生物學關係著生技產業未來發展,其未來發展實不容為我國所忽略。

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

TOP