日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。
日本特許法有關職務發明報酬規定之新近發展趨勢企業或機構對於所屬研發人員所為的 職務發明 , 應該給予多少的報償才算「合理」,近年來成為日本專利制度的爭議話題之一,其中 Olympus Optical Co., Ltd. v. Shumpei Tanaka 、 Yonezawa v. Hitachi Co. Ltd. 、 Nakamura v. Nichia Chemical Co Ltd 幾件訴訟案件更受到高度矚目,引發各界對於日本特許法(即專利法)中第 35 條第 3 、 4 項相關規定之檢討與議論,進而促使日本國會於 2004 年 5 月 28 日 通過特許法修正案,並自 2005 年 4 月 1 日 正式生效。 修正後之日本特許法有關受雇人發明制度部分,修正了第 35 條第 3 項及第 4 項並新增第 5 項。第 35 條第 3 項規定,受雇人依據契約、工作規則或其他約定,同意授予雇用人關於受雇人所為發明之專利申請權、專利權或設定專用實施權時,受雇人對於雇用人有收取合理報酬之權。第 35 條第 4 項規定,依據前項所定之契約、工作規則與其他約定,訂有報酬之約定時,在該報酬之決定標準係經由受雇人與雇用人協議為之,該報酬標準係經公開,且受雇人對於計算報酬金額所表達之意見,亦被充分聽取的情形下,依據該約定所為之報酬金給付應被認為是合理的。又同條第 5 項之規定,若企業內部之契約、工作規則與其他約定,並未規定報酬金額,或雖有規定,但該規定之報酬金額被認為是不合理的,則第 3 項所規定之合理報酬金額,應權衡雇用人基於該發明所獲得之利益、所承受之負擔及對該發明所做之貢獻,與受雇人在相關發明中所獲得之利益及其他相關因素加以認定之。 上述修正規定最大的特色在於 :(一)尊重自主協議 ; (二)報酬計算要件更加具體化 ; (三)鼓勵裁判外紛爭解決手段 。新修正之受雇人制度會帶來什麼樣的影響,目前各界仍在觀察;不過可確定的是,相較於舊法,新法至少在計算合理報酬上,要求雇用人須踐行更多的程序及其他要件,而這程序或要件規定將可減少法官在舊法時計算合理報酬金額的沈重負擔,與高度不確定所帶來的風險,並且亦可減少受雇人發明訴訟的總數量。 以日本電子大廠 Toshiba 新近在 7 月底與其離職員工 Fujio Masuoka 就閃光記憶晶片技術( flash memory chip technology )所達成之職務發明報酬和解協議為例, Toshiba 在 7 月 27 日 發布的新聞稿中,即特別感謝東京地方法院對公司有關員工職務發明之報酬政策及看法的尊重。
世界智慧財產權組織發布「2019年全球創新指數報告」(GII)2019年7月24日,世界智慧財產權組織(World Intellectual Property Organization, WIPO)、美國康乃爾大學(Cornell University)、歐洲工商管理學院(INSEAD)共同發布「2019年全球創新指數報告」(Global Innovation Index 2019, GII)。GII報告每年度發行一份,希望幫助全球決策者更有效地制定政策及促進創新。本年度的報告主題是「創造健康生活─醫療創新之未來展望」,內容展望創新醫療,包括:導入人工智慧(artificial intelligence, AI)、基因體學(genomics)和健康醫療相關的手機應用程式,將會改變醫療照護。醫療創新無論是在診斷或預後,由於大數據、物聯網(Internet of Things, IoT)和人工智慧等新興科技的興起而改變。伴隨而來的是倫理、社會經濟等多方面、史無前例且迫切的挑戰。報告中提及幾項重要發現: 儘管經濟衰退,然而全球創新遍地成長,不可忽略保護主義對於全球創新的潛在風險。 創新版圖開始位移,中收入的經濟體開始嶄露頭角,值得一提的是以色列躋身第十名,而南韓也在前二十名的名單。 創新的投入和成果(innovation inputs and outputs)仍集中於特定少數經濟體和地區。 特定經濟體透過創新獲得的投資報酬率,大幅高過其他經濟體。 從「重量不重質」,蛻變為「重質不重量」,仍為改革的重要方針。 多數科學與科技的創新集中在美國、中國和德國。 需要更多的投資並將科技普及化,方能透過醫療創新打造健康生活。 GII依據80項指標評比129個經濟體,指出,全球創新指數最高的國家排名前五名為:瑞士、瑞典、美國、荷蘭、英國,均為高所得國家。中高所得國家創新指數前三名為:中國、馬來西亞、保加利亞;中低所得國家前三名為:越南、烏克蘭、喬治亞;低所得國家前三名則是:盧安達、塞內加爾、坦尚尼亞。至於區域性的創性領袖國是印度(中亞與南亞)、南非(撒哈拉以南非洲)、智利(拉丁美洲和加勒比海地區)、以色列(北非與西亞)、新加坡(東南亞、東亞與大洋洲)。最頂尖的自然與科技聚落所在國家為:美國、中國、德國;並特別指出巴西、印度、伊朗、俄羅斯、土耳其表現亮眼。最頂尖五大聚落是東京-橫濱(日本)、深圳-香港(中國大陸)、首爾(南韓)、北京(中國大陸)、聖荷西-洛杉磯(美國)。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。