美國聯邦最高法院判決維持Brulotte原則

  2015年6月美國聯邦最高法院大法官以6比3的同意比例判決維持該法院於1964年所確立之Brulotte原則,即專利失效後禁止要求償付授權金之原則。聯邦最高法院重新檢討Brulotte原則之爭議係起源於Kimble et al. v. Marvel Enterprises Inc.(case num. 13-720)一案。該案中涉及到現實下專利權利人於面對財團時,是否能於專利權有效期間採取手段充分保護專利權之問題,故是否有必要放寬專利權於失效後,專利權人仍得以專利授權契約要求專利被授權人償付授權金。又本案原告知專利發明人Kimble主張放寬Brulotte原則亦有亦於刺激競爭,促進研發創新。
  然而,主撰判決本文之美國卡根大法官(Justice Kagan)及贊同維持Brulotte原則之大法官認為,Brulotte原則屬於聯邦最高法院遵照執行之決議事項(stare decisis),必須具有超級特別的理由(superspecial justification)才足以立論推翻該原則。但大法官認為並無有該類理由,並且強調縱然放寬Brulotte原則在學理上證實有助於市場競爭,但這也並非聯邦最高法院在司法權限所應審查或判斷之事項,而應是美國國會於智財政策之取捨。
  反對維持Brulotte原則之阿利托大法官(Justice Alito)、羅伯特首席大法官(Chief Justice Roberts)及湯瑪斯大法官(Justice Thomas)提出不同意見書。反對意見認為專利失效及失去任何專有權利,所以涉及授權金之唯一問題即在於最佳契約設計(optimal contract design)。Brulotte原則干預了各方協議授權內容時,可以反映專利真實價值的方式,破壞契約期望(contractual expectation)。
  本案作成判決後,各專利事務所及專利律師普遍贊同聯邦法院維持Brulotte原則,主要係基於該原則可以使用來償付授權金之資金轉為用於他處,有助於資金流通,而非用於已失效之專利。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國聯邦最高法院判決維持Brulotte原則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6905&no=0&tp=1 (最後瀏覽日:2025/04/04)
引註此篇文章
你可能還會想看
英國資訊委員辦公室推出資料分析工具箱協助組織檢視資料保護情形

  英國資訊委員辦公室(Information Commissioner's Office, ICO)於今(2021)年2月17日推出資料分析工具箱(data analytics toolkit)供所有考慮對個人資料進行資料分析的組織使用,旨在幫助組織駕馭人工智慧(Artificial Intelligence, AI)系統對個人權利所可能帶來的挑戰。   ICO表示,越來越多的組織使用AI來完成特定任務,例如使用軟體自動發現資料集(data sets)的模式,並藉此進行預測(predictions)、分類(classifications)或風險評分(risk scores),組織在使用個人資料進行資料分析時,納入資料保護的概念是至關重要的,除符合法律要求外,也能增強民眾對技術的信任與信心。   使用ICO的資料分析工具箱時,首先會詢問組織所適用的法律,並引導至相對應的頁面,並透過合法性(lawfulness)、問責與治理(accountability and governance)、資料保護原則(data protection principles)以及資料主體權利(data subject rights)等一系列的問題瞭解組織的資料保護情形,在回答所有問題之後,工具箱將產生一份報告,提供組織關於資料保護的建議,提高組織資料保護的法令遵循程度。   ICO強調,組織應該要在個人資料處理的過程中考量報告中所提及的建議,並向組織的資料保護長(Data Protection Officer, DPO)徵詢其意見,在組織委託、設計與實施資料分析時落實個人權利與自由的保障。

日本政府發布2024年版「實現數位社會重點計畫」

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 日本於2024年6月21日內閣決議更新「實現數位社會重點計畫」(デジタル社会の実現に向けた重点計画),作為日本最新數位與資料治理革新之上位政策,以達成實現Society5.0以及整合並協調各機關數位政策之目標,力求克服日本近年面臨人口減少、勞動力不足、產業競爭力下降、災害風險等之課題。 「實現數位社會重點計畫」自2021年發布第一版起,即以六項願景整合相關政策,分別為: 1. 數位化實現成長:數位轉型推動整體社會的生產力與競爭力; 2. 重要領域數位化:資料串連推動醫療、教育、防災、兒童等領域的安全發展; 3. 數位化實現區域振興:數位工具活化各區域特色; 4. 沒有人落後的數位社會:使所有人都可以體驗數位化服務; 5. 開發與保護數位人力:建立持續培養數位人力的社會; 6. 推動國際資料流通:實現資料可信任的跨國自由流通。 2024年「實現數位社會重點計畫」以六項願景分述各機關計劃推動的320個相關政策,如有醫院急救時共享醫療資訊、電子母子健康手冊、兒童資料串接、減少長者數位障礙、女性數位人才培育,以及推動資料可信任自由流通(Data Free Flow with Trust)等。 此外,本次更新之計畫新增「業務、系統、制度三位一體」作為推動架構。其中業務指結合資料與數位應用的行政服務;系統則是指適合於業務運作的軟、硬體;制度則指透過包含資料標準、指引或法令等方式形成之規範。日本藉此推動架構評估資料與數位之政策從起草、規劃到執行等階段中業務、系統與制度之間的協調性,為政策的制定者、使用者提供便利與高品質的數位體驗。 由2024年實現數位社會重點計畫的更新可知,日本強調在數位轉型階段中社會整體革新的企圖,加強政策在業務、系統、制度三個層面的一致性,以在邁向數位社會的同時克服社會轉型的挑戰。

加拿大提供App開發供應商指導方針解決因隱私保護所引發之問題。

  App已成為多數人每日不可或缺之夥伴,其應用層面廣及食、衣、住、行、育、樂等生活領域;不過用戶可能多未意識到,在App程式的下載及安裝過程中,開發供應商會記錄或接觸使用者手機中如電話簿、照片、影音檔案、簡訊、密碼記錄等其他資訊之可能。根據華爾街日報報導,56%的應用程式在用戶不知情的情況下,手機ID會發送給廠商;47%的應用程式會透露用戶的所處位置,使得個人隱私蕩然無存。   加拿大當地的隱私法規要求企業在追求創新及企業精神時必須將隱私保護納入考量;而在行動裝置應用環境中,無論是開發商、服務供應商、應用平台或是廣告商,只要有接觸用戶個人資訊之可能,就有遵守法規之義務。但考量App這樣一個嶄新又快速發展的科技生態,在實踐隱私保護精神之初可能會面臨到新的衝擊與挑戰。因此,加拿大隱私權主管機關(Office of the Privacy Commissioner of Canada,簡稱OPC)乃會同加拿大境內的阿爾伯特及不列顛哥倫比亞兩省各自之地方主管機關(其分別為Office of the Information & Privacy Commissioner of Alberta及Office of the Information & Privacy Commissioner for British Columbia)撰寫指導文件,希望能提供當地App開發供應商建議方案。   該項建議方案促使行動軟體開發供應商在設計與開發App應用程式時必須顧及使用者隱私之保護,並提供協助方式與預防原則,提高使用者隱私受保護之程度;除必須使用清晰且易懂之方式告知用戶的個人資料將進行何種用途外,在使用者下載前亦應告知被蒐集之資料類別及原因、資料儲存位置或地點、資料分享之可能及其原因、資料保存之期限、及其他可能影響用戶隱私之事件;倘若廠商必須變更隱私政策與規定,則應使用明確易懂之方式事先通知所有使用者了解進行何項變更,以強化用戶隱私與個人資料保護意識。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP