於2016年12月30日,中國大陸財政部及科技部為規範國家重點研發計畫管理,切實提高資金使用效益聯合發佈了《國家重點研發計畫資金管理辦法》。 該計畫以支援解決重大科技問題為目標,以“優化資源配置、完善管理機制、提高資金效益”為重點,辦法全文共8章57條,根據國家重點研發計畫特點,從預算編制到執行、結題驗收到監督檢查,針對全過程提出了資金管理的要求,明確《辦法》制定的目的和依據、重點研發計畫資金支援方向、管理使用原則和適用範圍,就重點專項概預算管理、專案資金開支範圍、預算編制與審批、預算執行與調劑、財務驗收、監督檢查等具體內容和流程、職責做了明確規定。 與原科技計畫資金管理辦法相比,《辦法》主要有以下變化: 1.建立了適應重點研發計畫管理特點的概預算管理模式。 2.遵循科研活動規律,落實“放、管、服”改革。適應科研活動的不確定性的特點,《辦法》堅持簡政放權,簡化預算編制,下放預算調劑許可權。 3.突出以人為本,注重調動廣大科研人員積極性。 為推動辦法有效落實,財政部及科技部並要求相關部門、專案承擔單位需要共同做好以下工作: 1.相關主管部門應當督促所屬承擔單位加強內控制度和監督制約機制建設、落實重點專項項目資金管理責任。 2.財政部、科技部將組織開展宣傳培訓,指導各有關部門和單位開展學習,全面提高對《辦法》的認識和理解,為政策執行到位提供保障。 3.科技部、財政部將通過專項檢查、專項審計、年度報告分析、舉報核查、績效評價等方式,對專業機構、專案承擔單位貫徹落實《辦法》情況進行監督檢查或抽查。
Ericsson專利訴訟新打手—專利蟑螂據報載,瑞典電信鉅業愛立信公司(Ericsson)已經將超過兩千筆的專利組合出售給Unwired Planet公司,此舉將更有利於Unwired Planet公司在智慧型手機的侵權官司當中繼續爭訟。此外,Unwired Planet公司宣稱Ericsson公司所移轉的2185件專利當中,包括美國及他國之專利權、專利申請案件給Unwired Planet公司,在這些移轉的專利組合當中,多數的技術都是與2G、3G,以及長期演進技術(Long Term Evolution,簡稱LTE)的專業技術領域有關。 Unwired Planet公司成立於1996年,同時宣稱自己為”行動網路的發明家”。透露說為了這次的合作,從公司成立時不久,即開始與授權公司以及Ericsson公司接洽。公司高層並指出,透過與Ericsson公司的合作,事實上已經傳達了高值的社會價值,反映出我們所承諾要保護並展現創新的觀點。 Unwired Planet公司是一間藉由把持專利權,以在各科技公司間興頌,並從中獲得利益的公司,通常被稱為專利蟑螂(patent troll)。
英國提出因應GDPR自動化決策與資料剖析規定之細部指導文件2018年5月,英國資訊專員辦公室(Information Commissioner’s Office, ICO)針對歐盟GDPR有關資料自動化決策與資料剖析之規定,公布了細部指導文件(detailed guidance on automated decision-making and profiling),供企業、組織參考。 在人工智慧與大數據分析潮流下,越來越多企業、組織透過完全自動化方式,廣泛蒐集個人資料並進行剖析,預測個人偏好或做出決策,使個人難以察覺或期待。為確保個人權利和自由,GDPR第22條規定資料當事人應有權免受會產生法律或相類重大效果的單純自動化處理決策(a decision based solely on automated processing)之影響,包括對個人的資料剖析(profiling),僅得於三種例外情況下進行單純自動化決策: 為簽訂或履行契約所必要; 歐盟或會員國法律所授權; 基於個人明示同意。 英國2018年新通過之資料保護法(Data Protection Act 2018)亦配合GDPR第22條規定,制定相應國內規範,改變1998年資料保護法原則上容許資料自動化決策而僅於重大影響時通知當事人之規定。 根據指導文件,企業、組織為因應GDPR而需特別留意或做出改變的事項有: 記錄資料處理活動,以幫助確認資料處理是否符合GDPR第22(1)條單純自動化決策之定義。 倘資料處理涉及資料剖析或重大自動化決策,應進行資料保護影響評估(Data Protection Impact Assessment, DPIA),判斷是否有GDPR第22條之適用,並及早了解相關風險以便因應處理。 提供給資料當事人的隱私權資訊(privacy information),必須包含自動化決策之資訊。 應確保組織有相關程序能接受資料當事人的申訴或異議,並有獨立審查機制。 指導文件並解釋所謂「單純自動化決策」、「資料剖析」、「有法律效果或相類重大影響」之意義,另就可進行單純自動化決策的三種例外情況簡單舉例。此外,縱使符合例外情況得進行單純自動化決策,資料控制者(data controller)仍必須提供重要資訊(meaningful information)給資料當事人,包括使用個人資料與自動化決策邏輯上的關聯性、對資料當事人可能產生的結果。指導文件亦針對如何向資料當事人解釋自動化決策處理及提供資訊較佳的方式舉例說明。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。