2014年12月22日,中國大陸食品安全法修訂草案二審稿增加關於食品貯存和運輸、食用農產品市場流通、基因改造食品標識(中國大陸用語為轉基因食品標籤)等方面之內容。二審稿規定,生產經營基改食品皆應按照規定進行標識,未按規定進行標識的,沒收違法所得和生產工具、設備等物品,最高可處貨值金額五倍以上十倍以下罰款,情節嚴重者責令停產停業,直至吊銷許可證。對於基因改造標識,中國大陸已於《農業轉基因生物安全管理條例》有規定,此次二審稿為保障消費者的知情權,增加加重食品安全違法行為的法律責任,採取多種手段嚴懲,並希望以法律形式將其確定。 我國食品安全衛生管理法於2014年12月10日修法中,對於基改食品標識部分並未修訂,僅在第22條及24條規定了要標識「食品之容器或外包裝,應以中文及通用符號,明顯標示下列事項…(包含基因改造食品原料)」以及「食品添加物之容器或外包裝,應以中文及通用符號,明顯標示下列事項中…(含基因改造食品添加物之原料)」。然而,我國與中國大陸此次修法雖皆有明訂,但明訂方式、標準等並未描述,又如美國佛蒙特州有意立法通過之基改食品標識法也在今年2015年1月因有爭議舉行公聽會,使該法令生效前恐有中止之情事。目前看來,不同國家有不同的基因改造食品標識政策,但國際間仍致力建立一套統一的規範。
英國取法美國國防先進研發署研發補助機制,提出先進研究發明署法案英國商業、能源暨產業策略部(Department for Business, Energy and Industrial Strategy, BEIS)於2021年3月2日向英國國會提交「先進研究發明署法案」(The Advanced Research and Invention Agency Bill),作為英國政府設立獨立研究機構「先進研究發明署」(Advanced Research and Invention Agency, ARIA)的法源依據,用以補助高風險、高報酬之前瞻科學與技術研究,將仍處於想像階段的新技術、發現、產品或服務化為現實。 本法案授予ARIA高度的自主性,使ARIA得以招攬世界頂尖的科學家與研究人員,規劃最具前瞻性與發展潛力的研究領域提供研發補助;同時也給予相較於其他研究機構更多容許失敗的彈性,並明確指出失敗是前瞻科學研究必然經歷的過程。ARIA對於研發資金的運用將因而獲得充分的自主性與彈性,包含對於研究計畫提供快速啟動基金與其他獎項做為激勵措施,或是依據研發進展即時決策是否延續或中止。 ARIA取法自美國國防先進研發署(Defense Advanced Research Projects Agency, DARPA),美國DARPA在網際網路、GPS等技術研發上的成就,直到近期支持針對COVID-19的mRNA疫苗及抗體療法從而取得重大進展,在在顯示了DARPA模式的可行性與重大影響力,而其成功的關鍵在於高度的自主性、靈活性以及最少的行政程序障礙,因此法案將允許ARIA不受政府採購相關限制、並免於政府資訊公開的義務,以減少行政程序對於研發進程的影響。但ARIA每年度仍須向國家審計署提供年度會計報告以作為政府對其最低限度的監督手段,除此之外,商業部長將有權中止與敵對勢力對象的研發合作或結束特定的研究計畫。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
爭議多時的日本P2P軟體Winny開發者,獲無罪判決確定日本著名的P2P(Peer to Peer)檔案共享軟體Winny因有侵害著作權法之公開傳輸權之爭議,兩名利用該軟體的使用者於2003年11月被日本群馬地檢起訴。隔年5月Winny軟體開發者「金子勇」因涉嫌構成幫助犯,被京都地檢起訴。全案歷經2006年京都地裁一審之有罪判決、2009年大阪高裁二審判決逆轉無罪、而檢方再上訴日本最高裁判所等程序。檢方於日前撤回上訴,並於2011年12月20日經最高裁判所裁定維持大阪高裁無罪判決,全案定讞。 大阪高裁認為,軟體的開發者未必能認識使用者會將軟體使用在非法目的上,難謂構成幫助之行為,因此,開發者本身對軟體的非法使用並不需要負責。不法行的情形應該是軟體開發者去鼓勵使用者利用軟體進行非法行為。 金子勇在20日召開記者會表示,網路上下載未經授權著作的問題還很多,將竭力解決相關問題,對自己之前開發的軟體而引起之相關侵權訴訟感到遺憾,並呼籲使用者誤濫用Winny,以實現更好的資訊社會。 而日本「電腦軟體著作權協會」(the Association of Copyright for Computer Software)向來致力於著作權之保護工作,協會對此結果表示並不否定P2P技術本身的價值中立性,但是將來會與相關著作權保護團體攜手合作,對於類似Winny的共享軟體之非法侵害,持續推動應對之策,並運用各種手段實現著作權受保護之健全環境。