美國管理不實施專利主體立法進程與趨勢

美國管理不實施專利主體立法進程與趨勢

科技法律研究所
法律研究員 劉憶成
2015年07月30日

壹、不實施專利主體概述

  「不實施專利主體(non-practicing entity, 以下簡稱NPE)」乃是一個中性的名詞,NPE一方面可促進專利技術交易市場的活絡,但另一方面也有NPE不以活絡專利技術交易市場為目的,而是透過以低價購買專利成為專利權人,並據以行使《專利法》上之權利,投機性地靜待商品製造者投入不可回復之鉅額投資後,始對該商品製造者行使專利侵權主張,對於後者有人將其稱之為「Patent Troll」(中文有譯為「專利巨人」、「專利蟑螂」、「專利流氓」、「專利地痞」或「專利恐怖份子」等等,以下統譯為「專利地痞」)。

  專利地痞藉由有問題的專利申請範圍恐嚇企業並勒索和解金的案例激增,對美國造成數十億美元的經濟耗損並且破壞了美國的創新,其橫行的技術領域以智慧型手機及其他消費性電子產品為最。根據加州舊金山的專利顧問公司RPX所作的研究,至2014年,美國專利侵權訴訟中有63%的訴訟是由專利地痞所提起,而受害公司花費在法律費用、和解或判決的費用約122億美元。因此如何降低專利訴訟的成本、降低無效專利的數量及提升專利權的授予品質都成為美國的重要政策目標。

貳、美國政府的對應措施

  為了解決專利地痞所帶來的問題,美國早在2011年由國會通過《萊希-史密斯美國發明法(Leahy-Smith America Invents Act of 2011),以下簡稱AIA》,該法並於2012年生效。其目的在於透過改善美國專利制度,包括為發明人提供專利處理程序的快速通道、採取重要步驟來降低專利案件的積壓及提升美國人在國外保護其智慧財產權的能力等等。

  不過,專利地痞所帶來的挑戰依舊,特別是專利地痞提出侵權訴訟之成本與被控侵權公司為了防禦所付出的成本之間不具對稱性,這使得專利地痞有機會以和解取得利益。因此,2013年美國政府曾向其國會提出立法七項建議,也祭出五項行政措施,使專利制度更具有透明性,並為發明者創造一個公平競爭的環境。

參、美國國會積極立法

  對此,美國開始了多項進一步管理專利地痞的立法進程。以下將就2015年美國國會針對專利地痞所提出之法案進行介紹。

  (一)新版創新法案(the Innovation Act)

  本法案2015年2月5日送入美國眾議院審議,其法案接續2011年的「美國發明法案」(the American Invents Act,AIA),企圖進一步解決專利地痞濫用訴訟之難題,其中重要條款包括:由敗訴方負擔律師費、提高專利訴訟的成案基準(pleading standard)、專利權人揭示制度、客戶中止訴訟程序等等。

  (二)警告函透明法案(Demand Letter Transparency Act of 2015)

  美國眾院於2015年4月20日提出《警告函透明法案》,該法案首先要求美國專利與商標局(USPTO)建立一個公開可查詢的警告函資料庫,然後要求大量寄發侵害警告函的行為人必須透過這個資料庫對USPTO揭露其行動,同時侵害警告函的內容也必須記載這些資訊,使收信人能夠公平得知。

  (三)保護美國人才與企業法案

  美國參議院於2015年4月底針對抗衡美國patent troll提出法案,該法案名為《the Protecting American Talent and Entrepreneurship (PATENT) Act》。希望能制止美國近年來濫用美國專利制度,所造成許多不必要之專利訴訟案件等情形。美國眾議院於2015年5月底又針對PATENT Act法案作出修正,希望在打擊專利地痞的同時,又不至於而造成專利權人濫用AIA的保護。

肆、結論

  為了解決專利地痞的問題,美國政府分別從立法及行政措施著手,依據美國歐巴馬總統的建議,不論是美國政府或是美國國會,刻正積極雙管齊下透過各項行政手段,例如修改專利相關規則,或者透過國會立法方式,對專利地痞進行規制。其實,專利地痞不僅橫行於美國,其亦在許多國家從事相關活動,故美國相關行政措施與立法,勢必成為各國在解決專利地痞問題時的重要參考依據,因此美國各項法案的後續發展,都值得吾人繼續關注。

本文為「經濟部產業技術司科技專案成果」

※ 美國管理不實施專利主體立法進程與趨勢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6953&no=64&tp=1 (最後瀏覽日:2026/02/16)
引註此篇文章
你可能還會想看
歐盟和德國對於自動駕駛及智慧交通系統之個人資料保護發展

Ofcom建議ISP之寬頻廣告應以平均速度為準

  鑑於ISP對於寬頻服務的廣告速度常與實際提供速度有落差,英國廣告標準管理局(Advertising Standards Authority,ASA)要求廣告事務委員會(Committee for Advertising Practice,CAP)與廣播廣告事務委員會(Broadcast Committee for Advertising Practice,BCAP)針對英國各地區的ISP寬頻廣告進行審查,CAP與BCAP則委託Ofcom進行各ISP實際寬頻服務速度之調查。   Ofcom於2010年11月~12月期間,針對ADSL、Cable及光纖等寬頻服務進行各時段的大規模測試。綜合以往的調查,Ofcom研究結果發現,英國寬頻服務平均速度約從 5.2 Mbps(2010年5月)至6.2 Mbps的(2010年11~12月),但不到廣告所宣稱速度之一半(平均寬頻廣告速度為 13.8 Mbps,故僅約45%。)   在各種寬頻技術中,ADSL的廣告與實際落差最大,廣告宣稱8Mbps之速度,實際平均僅有2~5Mbps;而Cable的廣告與實際落差最小,實際速度均能達到廣告速度的90%左右;光纖寬頻則約在80%~90%之間。      Ofcom並建議將以下原則增訂至英國寬頻速度自律規則(Voluntary Code of Practice on Broadband Speeds)中 • 如果寬頻速度是廣告內容,必須包括一個「典型的速度範圍」(Typical Speed Range,TSR),計算依據為將某一速度之使用者依照實際接取速度分為四等級,去掉最高與最低,取中間50%使用者之平均速度為準; • TSR必須至少與宣稱之速度相當; • 宣稱的速度必須代表相當大比例使用者能夠接受的實際速度; • 任何TSR或宣稱之速度在用於廣告時,必須是基於足夠的分析統計數據,而該數據與方法應經過審議。   Ofcom認為ISP的寬頻廣告應反映消費者能接受之實際速度,因此改變廣告規範是必要的,以促使各ISP進行以速度為基礎之競爭,並確保消費者有充分資訊可比較、選擇最有效率之寬頻服務。

日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度

2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國國土安全部發布「2024人工智慧路線圖」,確保AI安全開發與部署

美國國土安全部(Department of Homeland Security, DHS)於2024年3月17日發布「2024人工智慧路線圖」(2024 Artificial Intelligence Roadmap)(下稱AI路線圖),設立三大目標,將偕同旗下機關與產官學研各界合作,確保AI的安全開發與部署,保護國家關鍵基礎設施安全,以強化國家安全。 美國拜登總統於2023年10月30日簽署的第14110號總統行政命令《安全可靠且值得信賴的人工智慧開發暨使用》(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)(下稱AI總統行命令),要求DHS應管理使用於關鍵基礎設施與資通安全的AI、制定全球AI標準並推廣、降低利用AI造成具有大規模殺傷力武器攻擊之風險、保護AI智慧財產權、以及吸引AI領域人才,以促使、加強AI開發與部署等事項。為踐行上述事項,DHS制定AI路線圖,其三大目標如下: (1) 負責任的使用AI以推進國安任務(Responsibly Leverage AI to Advance Homeland Security Mission):透過建置AI基礎建設、建立AI系統測試與評估(Testing and Evaluation, T&E)、推動AI人才培育計畫等行動措施,帶領主管機關負責任的使用AI,以保護國家安全及避免AI對關鍵基礎設施的風險,確保AI於使用過程中係尊重個人隱私、保護公民權利與自由。 (2) 促進AI安全與資安(Promote Nationwide AI Safety and Security):利用AI技術改善與預防關鍵基礎設施之安全與資安風險、制定關鍵基礎設施之AI使用指引、以及成立AI安全與資安委員會(AI Safety and Security Board, AISSB),彙集產官學研各界專家意見。 (3) 透過擴大AI國際合作來引領AI發展(Continue to Lead in AI Through Strong, Cohesive Partnerships):將透過與產官學研各界合作,擴大AI的國際合作,並持續與公眾進行意見交流與分享,推廣AI政策或相關行動措施;DHS亦將持續與參眾議院及其他主管機關匯報AI相關之工作進度與未來規劃,以提升部門AI的透明度,並建立公眾對AI的信任。

TOP