共享經濟(Sharing-economy)為近來很夯的議題,其概念係藉由網路平台分享自有資產、資源、時間及技能及其他有用的事物,透過資源分享能更有效利用或者獲得收入。共享經濟不僅能夠促進經濟成長、鼓勵創業,同時也促進資產有效再利用,許多創新服務成功案例,例如Uber、Lyft、Airbnb等因此產生,然而,這類型之創新商業模式推展至世界其他各國發展時,卻遭遇到法規範的差異,與各國政府監督與管理出發點的不同,對各國政府與創新商業模式皆成為未來的挑戰。
舉例來說,目前Uber公司在法國、西班牙和德國等國禁止其提供服務,由於德國政府認為Uber未事先依法律規定辦理司機與營業車輛登記,故禁止Uber於德國境內服務;而西班牙政府認為Uber公司未取得經營執照,亦禁止其於西班牙提供服務。然而Uber公司認為,上述國家對於公司的發展已產生限制競爭與不公平的對待,進而向歐盟執委會(European Commission)提出申訴。
依歐盟條約(The Treaty on the Functioning of the EU, TFEU)規定,歐盟會員國各該內國法之制定原則上不可抵觸歐盟競爭法(EU competition laws),是以,各該歐盟會員國必須遵守歐盟競爭法訂立至少符合歐盟競爭法的相關規範。因此,若認為歐盟會員國的規範與實務操作有悖於歐盟條約所制定之公平競爭規則時,可向歐盟執委會提出申訴,該委員會如發現確實有違背公平競爭規則時,可要求該歐盟會員國修訂其國家的監管制度。
對此,歐盟、各該會員國之監管部門、市場競爭當局試圖尋找解決問題的平衡點,並在適當的監管與促進創新與競爭的環境下,俾利共享經濟於各國的推動與發展。
我國3G業務執照將於2018年底屆期,由於我國3G業務用戶數仍高,又我國第三代行動通信業務管理規則第48條第2項設有執照屆期後主管機關得為彈性處理之明文,故3G執照是否僅限於收回重新釋出頻譜,或是有其他更適宜之方式,實值進一步探討。 本研究首先借鏡國際上相關執照屆期重新釋出之執行措施與配套方案進行說明分析;其次,由市場面(我國行動通訊市場營運現況)與法制面(預算法、電信法及相關管理規則),探討我國3G執照屆期處理政策;最後提出相關建議,以供相關機關未來施政時參考。
電力市場2.0--2015德國電力市場改革最新發展 科技化創新金融服務規範研析—以行動支付和第三方支付為例 英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。