本文為「經濟部產業技術司科技專案成果」
世界四大電腦晶片業者決定與紐約州合作,在今後五年內出資 5.8億美元,研究發展下一代電腦微晶片製造技術。紐約州預定出資1.8億美元,美國IBM、超微半導體(AMD)、美光科技(Micron)與德國英飛凌預定各出五千萬美元的現金與設備,另2億美元由多家提供物料與設備的廠商提供。惟世界最大晶片廠商英特爾(Intel)並未參與此計畫,英特爾目前在x86微處理器市場中,占有銷售量的80%、銷售額的90%。 此國際奈米蝕刻事業( International Venture for Nanolithography, INVENT)計畫的基地,預定設在奧伯尼紐約州立大學奈米科學與工程學院,預期共有500多位研究人員、工程師與其他人員,投入此計畫。 奈米科技是研究分子與原子級的科學,此一計畫研究重心是利用光線,蝕刻大約頭髮直徑十萬分之一大小的電路,讓參與公司及早取得與學習應用研究出來的蝕刻工具。由於近年半導體速度與複雜性快速提高,晶片業者製造更小、更快晶片的難度增加,研究發展成本飛躍上升,業界體認到必須合作,才能負擔。一具蝕刻工具成本可能高達 2500萬美元,蝕刻工具進步攸關晶片廠商繼續縮小晶片規模,使每個晶片具有更多運算與儲存能力。目前生產的最先進晶片運用90奈米科技,晶片廠商希望從2006或2007年起,生產65奈米晶片。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
美國運動穿戴式裝置製造商之爭:Jawbone與Fitbits的智財爭訟今年十一月初,美國運動穿戴式裝置製造商Jawbone針對其競爭對手Fitbits所提起之專利侵權控告提出反訴,主張Fitbits濫用專利、涉嫌壟斷市場,違反反托拉斯法。本次Jawbone的反訴讓這場運動穿戴式裝置的智慧財產權之戰更加白熱化。 Jawbone及Fitbits為美國運動穿戴式裝置的兩大領導廠商,雙方在今年展開一連串的智慧財產權爭訟。這場智慧財產大戰開始於今年五月,當Fitbits正準備首次公開發行(IPO)時,Jawbone控告Fitbits挖角Jawbones部分員工,並藉此盜走Jawbone共約18000筆的機密資料。數週之後,Jawbone又控告Fitbits專利侵權,並緊接著向美國國際貿易委員會(United States International Commission)提起禁制令(Injunction),禁止Fitbits進口侵權產品。Fitbits在九月反擊,控告Jawbone侵害了包含其軟體和使用者介面設計在內的專利。十月,美國法院命令Fitbits五名員工應歸還Jawbone的所有機密資料。在獲得初步的勝利後,Jawbone又以Fitbits違反反托拉斯法為由,針對Fitbits在九月提出的專利侵權訴訟提起反訴,再次對Fitbits予以回擊。 在本次反訴中,Jawbone表示:「Fitbits蓄意濫用專利,目的是為了保持其市場地位。」Jawbone同時否認所有Fitbits的專利侵權指控。Jawbone更額外聲明,Jawbones將繼續跟進之前對Fitbits提起的三項專利侵權訴訟、營業秘密侵害訴訟,以及對ITC提起的禁制令。 相較於手機等其他智慧型裝置,運動穿戴式裝置仍屬於較年輕的市場,因此仍有相當多的發展性。然而,許多大廠相繼進入這個領域,也讓智慧財產權爭議越趨激烈。
基改作物MON810,德法命運大不同德國今年1月底通過新修法,使國際知名生技公司孟山都主要用做於飼料的基改抗蟲玉米MON810得以在德國更加順利種植。 原來德國法律規定基改作物與其相同種類傳統非基改作物間的種植距離為150公尺,與有機作物間的距離則為300公尺;但這項距離的規定對於農田面積多數不大的德國西部來說始終是一個問題,新法為此提供了一項新的出路,亦即基改作物種植者可與其相鄰傳統作物種植者簽訂契約來排除前述種植距離的限制,此項契約雖可能使傳統作物必須標示成為基改作物,但預估仍不會減低傳統作物種植者簽訂契約的意願。 專家評論德國這項新的立法仍然為德不卒,由於新立法並未將德國公開註冊制度中基改作物需揭露詳細的種植地點改為只需揭露種植地區,使得反基改分子仍將得以順利找到基改作物並加以破壞。另外,此次亦未修正的鄰田污染賠償責任使專家擔憂基改研究仍將限於校園內。 MON810在另一端的法國則顯得命運多舛,自去年秋天起,法國引用歐盟法的防衛條款(Articles 23 of the EU Deliberate Release Directive)來暫時禁種此一抗蟲玉米,於今年1月初,法國政府為此項問題所組成的委員會向環境部長提交調查結果,委員會主席並對外表示嚴重質疑MON810的安全性,並已取得大量MON810對動、植物負面影響的科學證據,使法國政府於1月中宣佈延續去年的禁種令。但專家質疑委員會主席對於調查報告之陳述失之客觀,由於調查報告中關於MON810商業種植對於環境影響的問題仍懸而未定,事實上並未存有委員會主席所謂的「嚴重質疑」。