美國FDA公布510(k)醫療器材上市前許可指引針對醫療器材上市前之審查規範提出更完善詳細之調整

刊登期別
第27卷,第03期 ,2015年03月
 
隸屬計畫成果
經濟部技術處產業創新體系之法制建構計畫成果
 

本文為「經濟部產業技術司科技專案成果」

※ 美國FDA公布510(k)醫療器材上市前許可指引針對醫療器材上市前之審查規範提出更完善詳細之調整, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7004&no=64&tp=1 (最後瀏覽日:2025/12/05)
引註此篇文章
你可能還會想看
歐盟如何打擊「非現金支付」詐欺?

  有鑑於「非現金支付」(non-cash payment)──包含信用卡、電子錢包、行動支付和虛擬貨幣──之詐欺犯罪率有增加之趨勢,歐洲議會公民、司法與內政委員會 (Committee on Civil Liberties, Justice and Home Affairs)於2018年9月3日批准一修正草案,更新2001年通過之理事會框架決定(Council Framework Decision)2001/413/JHA,提高非現金支付詐欺之刑責,同時強化被害人保護。此一修正草案旨在消弭歐盟成員國間之法律落差,以強化對非現金支付詐欺之預防、偵查及懲罰。   此一草案最重要者為將虛擬貨幣交易納入犯罪之構成要件,並提高刑責。如法官認定犯罪情節該當國內非現金支付詐欺最重之罪,則最低應處以三至五年之有期徒刑。而其他新增及修正之內容包含: 改善歐盟區域內之合作,以利跨境詐欺之訴追。 強化對犯罪被害人之援助,如心理支持、財務及法律問題之諮詢,並對缺乏足夠資源者提供免費法律扶助。 透過宣導、教育與網路資源(如詐欺之實際案例)提供,提升民眾認知及預防之意識。   於委員會投票批准修正草案後,其後將待歐洲議會通過,並與歐盟理事會開啟非正式對談。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

美國職業安全及健康研究院﹙NIOSH﹚在奈米風險控管上的突破性進展

  美國職業安全及健康研究院﹙NIOSH﹚是美國發展奈米科技的重要政府單位之一。近來,其頻頻透過國際組織的運作來處理與奈米科技有關之職業安全與健康影響問題。NIOSH首長John Howard表示,在國際層次上,科學家及決策者皆明瞭處理與奈米材料製造及產業使用所引致之職業病或職災,是當下最重要的工作之一。而由於NIOSH在促進世界性科學對話上,始終扮演者厥功甚偉的角色,因而在奈米科技發展初期,其亦積極協助此一科技能夠充分考慮安全及健康問題,發展出具全球協調性的技術方法,並有助於美國在國際市場的領先地位。而其近期主要成就在於以下三個部分: 1.今﹙2007﹚11月29日,經濟合作暨發展組織﹙OECD﹚人造奈米材料工作小組通過NIOSH-Led計畫,負責執行奈米材料暴露控制與測量等相關資訊之交換,同時透過領導小組,與會員國共同聚焦商討一些足以引起公眾意識的議題,例如在職業環境中之暴露測量與減輕。 2.其次,在今年12月4日至同月7日的國際組織會議中,ISO TC229表決通過有關奈米科技在職業環境之安全與健康規範的報告初稿,此報告係以NIOSH所發表一份名為“Approaches to Safe Nanotechnology”的報告作為基礎,而繼續由其發展與修正。本報告初稿送至ISO技術委員會審查,委員會認為報告內容涵蓋完整的技術性工作,且其未來影響將遍及全球,而為全球組織所關切。 3.此外,在今年12月2日,NIOSH另參與世界衛生組織﹙WHO﹚之職業健康合作中心全球聯網會議,當次會議之焦點在於奈米科技,會中NIOSH代表負責報告工程奈米粒子在職業安全及衛生上所遭遇之挑戰現況。本次會議中將決定WHO合作機制如何發展運作,以避免暴露於可能有害的工程奈米粒子。   整體而言,關於奈米科技之安全與健康影響及其相關應用的研究,NIOSH統整建置了一套策略性工作計畫,透過這些研究專門處理一些重要問題,包括某些對於評估風險及控制暴露極為有效的科學資訊。除了研究之外,NIOSH亦積極參與國際組織活動,可以預見其對奈米科技未來發展之影響將無遠弗界。

世界經濟論壇發布《贏得數位信任:可信賴的技術決策》

  世界經濟論壇(World Economic Forum, WEF)於2022年11月15日發布《贏得數位信任:可信賴的技術決策》(Earning Digital Trust: Decision-Making for Trustworthy Technologies),期望透過建立數位信任框架(digital trust framework)以解決技術開發及使用之間對數位信任之挑戰。   由於人工智慧及物聯網之發展,無論個人資料使用安全性還是演算法預測,都可能削弱人民對科技發展之信賴。本報告提出數位信任路線圖(Digital trust roadmap),說明建立數位信任框架所需的步驟,以鼓勵組織超越合規性,指導領導者尋求符合個人與社會期望之全面措施行動,以實現數位信任。路線圖共分為四步驟:   1.承諾及領導(commit and lead):數位信任需要最高領導階層之承諾才能成功,故需將數位信任與組織戰略或核心價值結合,並從關鍵業務領域中(例如產品開發、行銷、風險管理及隱私與網路安全)即納入數位信任概念。   2.規劃及設計(plan and design):透過數位信任差距評估(digital trust gap assessment)以瞭解組織目前之狀態或差距,評估報告應包括目前狀態說明;期望達成目標建議;治理、風險管理與合規性(governance, risk management and compliance, GRC)調查結果;將帶來之益處及可減輕之風險;計畫時程表;團隊人員及可用工具;對組織之影響等。   3.建立及整合(build and integrate):實現數位信任需關注人員、流程及技術等三大面向。首先需確保人員能力、達成該能力所需之資源,以及人員溝通與管理;第二,定義組織數位信任流程,包括制定計劃所需時程、預算及優先實施領域,調整目前現有管理流程,並識別現有資料資產;最後,針對技術使用,可考慮使用AI監控、雲端管理系統以及區塊鏈等,以監測資料之使用正確性及近用權限管理。   4.監控及滾動調整(monitor and sustain):建立數位信任框架後,需持續建構相關績效及風險評估程序,以確保框架之穩定,並根據不斷變化的數位信任期望持續改善,以及定期向董事會報告。

TOP