美國FDA公布510(k)醫療器材上市前許可指引針對醫療器材上市前之審查規範提出更完善詳細之調整

刊登期別
第27卷,第03期 ,2015年03月
 
隸屬計畫成果
經濟部技術處產業創新體系之法制建構計畫成果
 

本文為「經濟部產業技術司科技專案成果」

※ 美國FDA公布510(k)醫療器材上市前許可指引針對醫療器材上市前之審查規範提出更完善詳細之調整, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7004&no=67&tp=1 (最後瀏覽日:2025/11/17)
引註此篇文章
你可能還會想看
歐盟執委會提出「具可信度之人工智慧倫理指引」

  歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。   該指引並進一步指出人工智慧應遵守以下四項倫理原則: (1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。 (2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。 (3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。 (4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。

歐盟資通安全局公布《提升歐盟軟體安全性》研究報告

  歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年4月25日以歐盟網路安全驗證框架(EU cybersecurity certification framework)檢視現行安全軟體開發及維護之方式與標準,並公布《提升歐盟軟體安全性》(Advancing Software Security in the EU)研究報告。歐盟資通安全局後續將以該研究報告協助產品、服務及軟體開發之驗證,並期望能夠成為執行歐盟網路安全驗證框架相關利害關係人之非強制性參考文件之一。   本報告指出由於安全軟體已普遍應用於日常商品與服務當中,但目前針對軟體安全事故並無相對應之安全守則及技術,故為提高軟體安全層級並緩解目前已知之軟體安全威脅,應針對安全軟體開發及維護進行規範並驗證。   報告中除了針對軟體安全提出其應具備之要素、概述現行安全軟體開發方式及標準之缺點外,亦提出若以歐盟網路安全驗證框架針對軟體開發方式進行驗證時可考量之一些實際做法,包括: 已驗證之資訊與通訊科技(Information and Communication Technology, ICT)產品、服務或流程供應商或製造商,針對資料庫之部署及維護,除探討防止資料洩漏之方式外,尚應考量產品、服務或流程驗證過程中,進行資料共享會面臨之安全威脅以及緩解之方式。 應與歐洲標準組織(European Standards Organizations, ESOs)及標準制定組織(Standards Developing Organization, SDOs)合作。 建立一些針對軟體開發、維護及操作準則以補充現有歐盟網路安全驗證方案(EU cybersecurity certification schemes)。 針對現行不一致之軟體開發及維護規範,應考量建立較寬鬆之合規性評估(conformity assessment)標準。 借鏡現有經驗和專業知識,促進歐盟網絡安全驗證框架之適用。

美國專利商標局發布「發明AI」分析報告,由美國專利申請趨勢分析AI技術普及情形

  美國專利商標局(USPTO)於2020年10月27日發布「發明AI:由美國專利觀察AI普及情形」(Inventing AI: Tracing the diffusion of artificial intelligence with U.S. patents)智財資料分析報告,本報告分析2002年至2018年共16年間美國AI專利之申請資料,發現在AI專利申請數量由3萬件成長至6萬件,成長幅度為100%,而在全體專利當中AI相關專利所占比率,也由原本的9%成長至接近16%,顯示在AI技術研發創新與普及率的顯著成長。   報告指出,自1950年圖靈(Alan Turing)提出「機器能否思考?」問題以來,現今AI技術的發展已經達到連圖靈也會讚嘆的水準,AI技術在發明領域的重要性益發提升,活躍於AI領域的發明人占全體專利權人的比率也從1976年的1%提升到2018年的25%,在組織的發明專利上也呈現相同的趨勢;除了美國銀行(Bank of America)、波音公司(Boeing)以及奇異電子(General Electric)之外,前30大頂尖的AI公司都來自資通訊領域,其中佔據首位者為擁有46,752項專利的IBM,其次為擁有22,076項專利的微軟以及10,928項專利的Google,而AI技術的應用領域也更加多元,並且與在地產業做結合,例如應用在奧勒岡州的健身訓練與設備以及北達科他州的農業上。   USPTO指出,經由專利資料分析顯示AI技術的發展不僅有顯著的成長,並逐漸與在地產業結合、落實在不同產業領域的多元應用,AI對於產業的影響力將不亞於電力或半導體,隨著AI領域發明人的顯著成長,未來將有更多AI技術在各領域的應用出現,而擴大AI影響力的關鍵在於發明者與公司能否成功將AI納入現有或新產品的功能、流程或服務之中。

法國《數位服務稅法》(Digital Services Tax Act)

  法國國民議會於2019年7月11日通過《數位服務稅法》(Digital Services Tax Act),並於當月24日由總統簽署,翌日生效。《數位服務稅法》將對境外數位服務業者的數位服務營收(Digital Turnover)課徵3%稅金。所謂「數位服務業者」包含媒介服務業者(Intermediary Services)或在數位介面提供精準行銷服務(Targeted Advertising)者;而「數位服務營收」包含廣告營收、平台佣金、轉售個人資料之所得。   跨境電商影響傳統商業模式並衍生稅收課徵的難題,經濟合作暨發展組織(Organization of Economic Cooperation and Development, OECD)於2015年提出稅基侵蝕及利潤移轉方案(Base Erosion and Profit Shifting, BEPS),行動方案之一即是數位時代的稅徵議題(Tax Challenges Arising from Digitalisation),並於2019年10月9日亦向公眾徵詢數位稅之意見。而歐盟亦從2017年即開始研擬是否對於數位服務課稅,然而尚無共識。   法國率先提出《數位服務稅法》,被外界解讀為抗衡美國科技巨擘Google、Apple、Facebook、Amazon而設,取四巨擘的字首稱之GAFA稅(GAFA Tax)。對此,法國官方澄清,境外數位服務業巨頭比歐洲中小企業少付了14%稅金,對法國造成實質的負面影響。而受《數位服務稅法》影響的團體是在前一個會計年度,全球數位服務營收超過7500萬歐元或在法國數位服務營收超過250萬歐元的公司,受影響者估計超過30間,雖然也會影響Google等美國科技業巨擘,但並非針對性,亦非為對抗美國而設的專法。然而,法國《數位服務稅法》仍引起美國官方的反彈並啟動「301條款調查」(Section 301 Investigation),該調查報告指控法國的數位稅具貿易歧視之虞。美、法雙方代表於2020年1月28日就數位稅進行對話,美國承諾不會對法國進行關稅報復,法國表示對於數位稅的推行不會退讓。

TOP