網路和數位科技正急速翻轉我們的世界,建立「歐盟單一數位市場」(EU Digital Single Market)為歐盟執委會的首要優先政策項目之一,發展健全的單一數位市場可為歐盟增加4,150億之經濟成長,創造數以萬計的新工作機會,實現一個充滿活力的知識型社會。然服務的「上網」仍存在一定程度尚未跨越之障礙;根據調查,超過90%的歐洲人擔憂他們所使用的行動應用程式(apps)沒有經過他們的同意即蒐集其個人資料。使用者對網路服務欠缺信任,產業以及政府亦無法充分透過數位科技工具獲益,因此如何提升人民對於網路服務的信任成為歐盟官方當前重要議題。
為解決此問題,歐盟執委會已著手進行個人資料保護法規的改革,針對現行的資料保護法規提出新修法案,主要目標在加強人民於個人資料保護之相關權益,以降低使用者個人隱私遭洩漏的疑慮,此外也將對企業帶來諸多利多。新修法案針對人民權益保障的加強,包括:
1.被遺忘權(A right to be forgotten):已明文規定於現行歐盟資料保護法規,新修法案將更進一步強化個人被遺忘權的行使-尤其是青少年。對此歐盟理事會表示贊同,但亦強調被遺忘權並非絕對之權利,不應凌駕於言論自由以及新聞自由之上。
2.資料可攜帶權(A right to data portability):使用者可更輕易的移轉其個人資料於不同的網路服務提供者之間。
3.個資被駭之被告知權:若網路服務提供者發生嚴重個資洩漏事件必須盡快告知主管機關,讓使用者得採取適當措施。
4.個資保護措施優先:強調在服務或產品早期開發階段就應該優先考量個人資料保護措施的設計,取代事後補救的觀念;尤其社交網路服務或行動apps相關服務的開發,隱私默認的設定應為預設之常態。
新修法案也包含多項對相關企業有利之措施,例如:
1.一歐陸一法律:企業在歐盟經濟區域遵行單一之歐盟資料保護法規,而非28國不同法規,預估每年可節省23億歐元之遵法成本。
2.單一監管窗口:整合28國主管機關以建立單一對外監管窗口,讓欲經營歐盟市場的企業與主管機關的交涉能更簡單、有效率。
3.參與歐盟市場之企業皆遵守相同標準法規(European rules on European soil):依現行歐盟法規,設籍於歐盟境內之企業必須遵守比境外企業更嚴格的法規標準,故新修法案極力建立公平競爭環境,經營歐盟市場之企業不論是否設籍於歐盟皆等同對待。
4.簡化繁文縟節之行政規定:新修法案刪除了企業通知主管機關等不必要之繁文縟節要求,此尤其利於中小企業節省行政成本。
5.免除中小企業進行個資影響評估之責任:除非有明確顯見之風險,始課予中小企業個資影響評估之責任。
歐盟執委會、理事會與議會於2015年6月開始針對資料保護法規新修法案進行三邊協商,預計於2015年底完成最終之協議。
經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。
美國紐約州長簽署電動車充電樁安裝法案,以實現零碳排放車輛之目標2022年11月22日紐約州長Kathy Hochul簽署一項新法案(S.8518A /A.6165A),旨在消除在私人財產上安裝電動車充電樁之障礙,以實現紐約州零碳排放車輛之目標。 該法案允許民眾在家中安裝充電站,並要求屋主協會(Homeowner Association,HOA,類似我國社區管理委員會)如欲拒絕屋主申請安裝電動車充電樁,須提出書面詳細說明理由,如於 60 天內未提出,除非是因為HOA合理要求其補正資料所致,否則屋主的申請即視為許可。紐約州欲透過該法案提升車主於住處安裝電動車充電樁數量,進而提高電動車使用率。 紐約州於2021年已立法(A.4302/S.2758)要求自2035年起販售新車皆需為零碳排放車輛,期許至2050年可達85萬輛零碳排放車輛。透過各項電動車相關政策之推動,2021年紐約州電動車銷售量大幅增長,截至2022年9月全州已超過11.4萬輛電動車上路,電動車充電站超過1萬座。 對此,我國立法院法制局於2022年6月發布「社區設置電動車充電設備問題之研析」報告指出,社區仍應以用電安全第一,不宜強制設置充電樁,現階段宜規定電動車廠商應設置充電設備或更換電池的設施,如要修正「公寓大廈管理條例」強制社區設置電動車的充電設備,建議優先修正「建築法」或「建築技術規則」加強設置該設備安全要求。
美國EPA計劃創建三大生質能源研究中心美國能源局(EPA)宣布,將創建三個生質能源研究中心(bioenergy centers),以研發將植物轉化為燃料的技術方法。此舉乃是布希總統作出美國在未來十年內將降低20%的石油用量之政策宣布後,第一個採取具體配套行動的聯邦政府機關。 生質能源研究中心設立的宗旨是希望在未來五年內能夠以先進技術,成功開發生質能源的產品上市。根據EPA的對外公告資料,三大生質能源研究中心將以公司組織的形式運作,每一個研究中心總投入資本將高達1億2千5百萬美元,三大研究中心分別是位在田納西州Oak Ridge、威斯康辛州的Madison以及加州Berkeley附近,這些區域原本就是重要的研究重鎮,匯聚許多的大學、國家實驗室以及私人企業,形成產業聚落,預計三大生質能源研究中心將自2009年9月1日起的預算年度開始運作。 EPA希望藉由研究中心的聚落效應,集中資源協助這些研究中心從自然界中破壞木質素(lignin)的微生物出發,找出植物的確切細胞膜質(cellulose)之所在。細胞膜質或稱纖維素,是轉化成為乙醇、液態燃料等能源的重要來源物質,因此這些生物運轉機制的瞭解與掌握,乃是開發生物能源技術的基礎。 值得注意的是,各國致力於發展生物燃料以替代汽油的政策,已經使得某些兼具多種用途的作物價格持續攀升,此可由國際期貨市場價格獲得印證。為避免生物燃料的發展反而造成食用作物的搶奪大戰,影響作物市場價格,研究中心也將致力於尋找可以製造較易處理的木質素的新作物種類。
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。