本文為「經濟部產業技術司科技專案成果」
過去,在Tesla的總部大廳有一道專利牆,然現在已將它們移除,並不代表任何意義了,象徵進入推動類似「開放原始碼軟體」的概念,促進電動交通工具科技的發展。電動車製造商Tesla 的執行長Elon Musk表示S電動車款將仿效「開放原始碼軟體」的概念,免費提供製造者使用相關專利,以加速電動車產業的發展,因電動汽車的銷售量,仍未及一般汽車銷售量的1%;再者,假如電動車廣泛的發展,亦可降低電池交換站等基礎設施的成本。 Tesla為促進永續運輸的發展,將釋出數百件專利,且不會針對任何基於善意使用Tesla技術的人,提起專利訴訟,並進一步表示「假如我們是創造電動交通工具的開路先鋒,卻同時佈下許多智財地雷,禁止其他人踏入電動車產業領域,豈不是和我們的理念背道而馳。」Elon Musk坦言當他經營第一間公司時,認為專利等同於獎勵,因此設法努力取得專利;但之後體認到專利某程度阻礙進步,且保護的是大企業而非發明人本身,亦即企業有如獲得一場訴訟的門票,必須盡量避免運用此手段。 每年全球有100億元的新車產量,Tesla的生產速度根本不足以應對碳危機,易言之,在如此廣大的市場,Tesla真正的敵人為世界各地工廠每日傾瀉出產的汽油車,而非其他的電動車製造商,故釋出專利的舉動,相信將能促始其他電動車製造商,甚至全世界的電動車產業,因此共同且加速發展的科技平台而受惠。
國家技術標準之制定政策-由英國BSI觀國家技術標準制定政策國家技術標準之制定政策 -由英國BSI觀國家技術標準制定政策 科技法律研究所 法律研究員 徐維佑 2014年12月03日 壹、前言 所謂技術標準(standards),指透過法規、私人企業、或者產業慣例形成的統一技術或特定規格,包括重量、大小、品質、材料或技術特徵(technical specifications),以使商品、服務、製造或製造程序方法能有共通的設計或相容性[1];由特定標準制定組織要求市場上商品或服務應符合一定品質者,亦為技術標準,例如確保農產品符合人體食用的健康安全標準。 制定技術標準不但具有降低生產成本、促進創新、加強消費者選擇性、增進公共健康及安全等優點,更是國際貿易的基礎。以技術日新月異的ICT資訊通信產業而言,標準更是搶佔市場的利器。 貳、英國國家標準制定政策 成立於西元1901年之英國標準協會(British Standards Institution,以下簡稱BSI)為英國標準制定組織,亦是全球第一個國家標準機構,專門提供企業解決方案,將最佳實務模式(best practice)轉換成日常表現標準。BSI非政府機構,但透過與英國政府商業、創新與技術部門(Department for Business, Innovation and Skills, BIS)簽訂備忘錄,BSI成為英國國家標準制定組織,而其特色與任務大致如下: 一、以整體產業為考量之標準制定機構 BSI標準制定業務範圍[2],除國家、區域、國際標準外,亦為私人企業、企業聯盟制定企業內部或企業聯盟間私人標準。標準制定之作法,係由產業界提名各領域之專業人員,及少數之政府部會官員成立標準制定委員會,各委員並非代表公司立場,而係以整體產業最有利立場參與會議;而BIS政府官員功能僅為傳達目前政府部會投入發展方向;標準制定委員會下,則設有技術委員會,委員各為特定技術領域之專家。BSI的原則為取得各界意見的平衡,在技術委員會成員組成上會避免單一勢力獨大,並盡力避免標準中包含特定權利人之智慧財產。 二、協助技術發展之階段式標準制定工作 BSI對於英國國內之技術研究、發展活動,採階段式引導標準化制定工作: 1、基礎研究階段:即早整合各利害關係人共識,建立共同發展對話基礎; 2、驗證技術可行性階段:藉由建立專家小組,發展初期測試方法與安全管理之共同觀點; 3、技術整合階段:即早為市場作準備,統一規格與測試方法,以及日後之技術升級方法; 4、原型製作階段:建立產業間行為準則,同時廣納消費者觀點,提昇該技術於市場之接受度; 5、應用測試、系統驗證階段:連結該技術與市場上產品、或其他服務、亦或其他標準組織制定之標準。 值得強調的是,BSI於研究發展活動各階段制定之標準提案草案皆會公佈於網站上,提供平台予大眾針對草案表示意見。 三、快速形成產業標準之PAS共通規範 BSI設有「可公開獲得的規範(publicly available specification, PAS)[3]」,相較於一般國家標準、國際標準,開發PAS時程較短,其目的為在英國國家標準或國際標準形成前,作為提早提供市場參考、使用之共通規範,國際標準如ISO亦有此制度。當技術共通規範成為PAS後,每3年接受技術委員會確認是否延續,或轉將其提案為國際標準。 私人企業可向BSI付費委託發展PAS共通規範。BSI會派專業人員指導企業如何撰寫PAS共通規範提案相關文件,集合內部專家團隊協助完成PAS共通規範提案。完成後對外召集內外部專家檢視PAS提案,包括標準制定委員會成員、政府官員、相關產業人員與消費者團體,並將檢視結果建議回饋給BSI內部專家團隊決定最終版本,公佈予給各界參考使用,公佈後之成果亦作為日後發展國家標準、國際標準之基礎。 參、結論 英國國家標準制定組織BSI,不遺餘力的協助產業自願性形成共識作為國家標準主軸,由產業推舉之專業人員與政府各領域官員作為技術委員會成員,平衡各界意見以整體產業發展為考量。藉由研究發展各階段性標準化工作,公開標準草案廣納各界意見,並盡力避免標準包含特定人之智慧財產權。並且,BSI協助國內企業發展PAS共通規範,除加速國內產業共識的形成外,更建立發展國際標準之良好基礎,摃動英國產業發展,並保障社會、環境、消費者之權益,值得我國學習。 [1]Mark A. Lemley, Intellectual Property Rights and Standard-Setting Organizations, 90 Calif. L. Rev. 1889, 1910-1911 (2002), available at http://scholarship.law.berkeley.edu/cgi/viewcontent.cgi?article=1392&context=californialawreview (last visited Aug. 28, 2014) [2]筆者親自訪談Daniel Mansfield政策主任,BSI Group總部,英國倫敦(2014/10/15)。 [3]ISO, ISO/PAS Publicly Available Specification (2014), http://www.iso.org/iso/home/standards_development/deliverables-all.htm?type=pas (last visited: 2014/10/01)
美國FDA醫療器材與放射健康中心發布2024財政年度醫療器材指引美國食品藥物管理署(U.S. Food and drug administration, FDA)之醫療器材與放射健康中心(Center of Devices and Radiological Health, CDRH)於今(2023)年10月10日發布2024財政年度指引,其內容依據預算配置的優先順序,將2024年醫療器材與放射產品相關指引分為「A級」、「B級」及「回顧性審查」三份清單。而CDRH希望將訊息公佈後,針對這些指引的優先處理順序、修改或刪除徵求外部建議,以下節錄這三份清單內容: (1)A級清單:FDA擬於2024 財政年度優先發佈的醫療器材指引文件清單,內容包含醫材的再製造及短缺管理、預訂變更控制計畫、運用真實世界證據輔助監管之決策,及基於人工智慧/機器學習之醫材的軟體生命週期管理指引等。 (2)B級清單:FDA 在 2024 財政年度於資源許可的前提下,擬發佈的指引文件清單,內容包括醫材製造商的故障主動報告計畫、製造與品質系統軟體之確效管理,及診斷測試用之3D列印醫材管理指引。 (3)回顧性審查清單:為1994年、2004年和2014年發佈至今,目前仍適用的指引文件綜合清單,詢問是否有需與時俱進之處。 具體而言,CDRH希望徵求外界對現有清單優先順序配置合宜性的建議,同時也開放各界提出哪些醫材相關主題的指引文件草案可待補充。對於回顧性審查清單,如有修訂或刪除之必要,亦應檢具建議與具體理由。 從此三份清單及後續外界的意見,我們可藉此掌握美國在醫材短缺管理、預定變更控制、運用真實世界證據決策,及醫材軟體生命週期與確效管理等領域,政府資源配置與投入的規劃,同時也作為我國醫材政策之借鏡。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。