再工業化!?美國推動先進製造知基礎法制政策研析

刊登期別
第27卷第4期
 
隸屬計畫成果
經濟部技術處產業科技創新之法制建構計畫成果
 

本文為「經濟部產業技術司科技專案成果」

※ 再工業化!?美國推動先進製造知基礎法制政策研析, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7063&no=64&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
陳總統:打造台灣成亞太生技營運中心

  陳水扁總統表示,行政院推動「加強生物技術產業推動方案」,將在5年內帶動1500億元投資、10年內成立500家以上生技公司,打造台灣成為亞太地區生技創投、研發以及營運中心。他期盼中研院基因體研究中心大樓加中研院頂尖研究團隊,如同承載台灣「兩兆雙星」中生技之星的「子彈列車」,引領台灣生技產業超越各國,奔馳在世界最前端。   陳總統表示,本世紀人類基因體序列的解碼,開創並主導了生技產業革命性的發展,展望未來,生命科學家所面臨的挑戰,將更著重於瞭解基因的複雜性、以及解析蛋白質結構與功能,並藉此發展新的生技醫療產品,以改良人類生活及生命品質。   有鑑於「基因與蛋白體研究」是全球廣泛重視的尖端科學,陳總統說,政府自2002年即進行「基因體醫學國家型計畫」,在各地籌建基礎設施和研發中心,而「中研院基因體研究中心」正是推展計畫的核心工程。他相信,這項重大投資將提供一個健全的研發環境及專業技術平台,協助台灣的生技產業掌握市場利基,進而落實行政院在「加強生物技術產業推動方案」中所訂定各項發展目標。

紐西蘭人工智慧論壇所發佈人工智慧原則

  紐西蘭人工智慧論壇(AI Forum)協會成立於2017年,為非營利組織,是紐西蘭政府的重要智庫單位。該協會的AI法律、社會和倫理工作組於2020年3月4日發表了紐西蘭第一份《紐西蘭可信賴的AI指導原則》, 此指導原則目的在提供簡潔有力的人工智慧參考點,以幫助大眾建立對紐西蘭人工智慧的開發和使用的信任。此份AI指導原則對政府具有重要的參考價值。   《紐西蘭可信賴的AI指導原則》,內容摘要如下: 一、公平和正義 (一)適用紐西蘭及其他相關管轄地包含科克群島、紐埃、托克勞、南極羅斯屬地法律; (二)須保護紐西蘭國內法及國際法所規範的人權; (三)須保障《懷唐伊條約》中毛利人的權利; (四)民主價值觀包含選舉的過程和在知情的情況下進行公眾辯論; (五)平等和公正的原則,要求人工智慧系統不會對個人或特定群體造成不公正地損害、排斥、削弱權力或歧視。 二、可靠性、安全性和私密性 AI利益相關者須確保人工智慧系統及資料的可靠、準確及安全性,並在人工智慧系統的整個生命週期中,保護個人隱私以及持續的識別和管控潛在風險。 三、透明度 人工智慧系統的運作應是透明的、可追溯的、並在一定的程度上具可解釋性,在面對責問時能夠被解釋且經得起質疑。 四、人類的監督和責任 AI利益相關者,應該對人工智慧系統及其產出進行適當的監督。 在利益相關者確定適當的問責制度和責任之前,不應使用會對個人或群體造成傷害的技術。 五、福利 AI利益相關者應在適當的情況下設計、開發和使用人工智慧系統,盡可能促進紐西蘭人民和環境的福祉,像是健康、教育、就業、可持續性、多樣性、包容性以及對《懷唐伊條約》獨特價值的認可。   此份AI指引較大的特色有兩點,第一,紐西蘭人工智慧論壇協會的成員組成,其中女性成員比例超過半數。第二,在其指導原則中第一點的「公平和正義」及第五點「福利」中,都特別提到須遵守《懷唐伊條約》以確保毛利人的權益。在這樣的基礎下,能更期待紐西蘭在發展AI技術的過程,能夠更切實的做到公平正義、無歧視。

歐盟資料保護工作小組修正通過個人資料侵害通報指引

歐盟資料保護工作小組修正通過「個人資料侵害通報指引」 資訊工業策進會科技法律研究所 法律研究員 李哲明 2018年3月31日 壹、事件摘要   因應歐盟「通用資料保護規則」(The General Data Protection Regulation,或有譯為一般資料保護規則,下簡稱GDPR)執法即將上路,針對個人資料侵害之通報義務,歐盟資料保護工作小組(Article 29 Data Protection Working Party, WP29)特於本(2018)年2月6日修正通過「個人資料侵害通報指引」(Guidelines on Personal data breach notification under Regulation 2016/679),其中就GDPR所規範個資侵害之定義、對監管機關之通報、與個資當事人之溝通、風險及高風險評估、當責與紀錄保存及其他法律文件所規定之通報義務等,均設有詳盡說明與事例。 貳、重點說明 一、何謂個資侵害?個資侵害區分為哪些種類?   依據GDPR第4條(12)之定義,個資侵害係指:「個人資料因安全性之侵害所導致意外或非法之毀損、喪失、修改、未經授權之揭露、存取、個資傳輸、儲存或其他處理。」舉例來說,個人資料之喪失包括含有控制者(controller)顧客資料庫的備份設備之遺失或遭竊取。另一例子則為整份個資的唯一檔案遭勒索軟體加密,或經控制者加密,但其金鑰已滅失。依據資訊安全三原則,個資侵害之種類區分為: 機密性侵害(Confidentiality breach):未經授權、意外揭露或獲取個人資料。 完整性侵害(Integrity breach):未經授權或意外竄改個人資料。 可用性侵害(Availability breach):在意外或未經授權之情況下,遺失個人資料存取權限或資料遭銷燬。 二、何時應為通知?   按GDPR第33條(1)之規定,當個資侵害發生時,在如果可行之情況下,控制者應即時(不得無故拖延)於知悉侵害時起72小時內,依第55條之規定,將個資侵害情事通報監管機關。但個資侵害不會對自然人之權利和自由造成風險者,不在此限。倘未能於72小時內通報監管機關者,應敘明遲延之事由。 三、控制者「知悉」時點之判斷標準為何?   歐盟資料保護工作小組認為,當控制者對發生導致個人資料侵害的安全事件達「合理確信的程度」(reasonable degree of certainty)時,即應視為其已知悉。以具體事例而言,下列情況均屬所謂「知悉」: 在未加密個人資料的情況下遺失USB密鑰(USB Key),通常無法確定是否有未經授權者將獲致存取資料權限。即使控制者可能無法確定是否發生機密性侵害情事,惟仍應為通知,因發生可用性侵害之情事,且已達合理確信的程度。   故應以控制者意識到該密鑰遺失時起為其「知悉」時點。 第三人通知控制者其意外地收到控制者的客戶個人資料,並提供該揭露係未經授權之證據。當侵害保密性之明確證據提交控制者時,即為其「知悉」時點。如:誤寄之電子郵件,經非原定收件人通知寄件者之情形。 當控制者檢測到其網路恐遭入侵,並針對其系統進行檢測以確認個人資料是否遭洩漏,嗣後復經證實情況屬實,此際即屬「知悉」。 網路犯罪者在駭入系統後,聯繫控制者以索要贖金。在這種情況下,控制者經檢測系統並確認受攻擊後,亦屬「知悉」。   值得注意的是,在經個人、媒體組織、其他來源或控制者自我檢測後,控制者或將進行短暫調查,以確定是否發生侵害之事實。於此調查期間內所發現之最新侵害情況,控制者將不會被視為「知悉」。然而,控制者應儘速展開初步調查,以形成是否發生侵害事故之合理確信,隨後可另進行更詳盡之調查。 四、共同(聯合)控制者之義務及其責任分配原則   GDPR第26條針對共同控制者及其如何確定各自之法遵義務,設有相關規定,包括決定由哪一方負責遵循第33條(對主管機關通報)與第34條(對當事人通知)之義務。歐盟資料保護工作小組建議透過共同控制者間之契約協議,約明哪一方係居主要地位者,或須負責盡到個資侵害時,GDPR所定之通知義務,並載於契約條款中。 五、通報監管機關與提供資訊義務   當控制者通報監管機關個資侵害情事時,至少應包括下列事項 (GDPR第33條(3)參照): 敘述個人資料侵害之性質,包括但不限於所涉之相關個資當事人、個資紀錄及其類別、數量。 傳達資料保護長(DPO)或其他聯絡人之姓名與聯絡方式,俾利獲得進一步資訊。 說明個資侵害可能之後果。 描述控制者為解決個資侵害業已採取或擬採行之措施,在適當情況下,酌情採取措施以減輕可能產生之不利影響。   以上乃GDPR要求通報監管機關之最基本事項,在必要時,控制者仍應盡力提供其他細節。舉例而言,控制者如認為其處理者係個資侵害事件之根因(root cause),此時通報並指明對象即可警示委託同一處理者之其他控制者。 六、分階段通知   鑒於個資事故之性質不一,控制者通常需進一步調查始能確定全部相關事實,GDPR第33條(4)爰設有得分階段通知(notification in phases)之規定。凡於通報時,無法同時提供之資訊,得分階段提供之。但不得有不必要之遲延。同理,在首次通報後之後續調查中,如發現該事件業已受到控制且並未實際發生個資侵害情事,控制者可向監管機關為更新。 七、免通報事由   依據GDPR第33(1)條規定,個資侵害不會對自然人之權利和自由造成風險者,毋庸向監管機關通報。如:該遭洩露之個人資料業經公開使用,故並未對個人資料當事人構成可能的風險。   必須強調的是,在某些情形下,未為通報亦可能代表既有安全維護措施之缺乏或不足。此時監管機關將可能同時針對未為通報(監管機關)或通知(當事人),以及安全維護措施之缺乏或不足,以違反第33條或(及)34條與第32條等獨立義務規定為由,而依第83條4(a)之規定,併予裁罰。 參、事件評析 一、我國企業於歐盟設有分支機構或據點者,宜指派專人負責法遵事宜   揆諸GDPR前揭規定,當個資侵害發生時,控制者應即時且不得無故拖延於知悉時起72小時內,將個資侵害情事通報監管機關。未能履踐義務者,將面臨最高達該企業前一會計年度全球營業額之2%或1千萬歐元,取其較高者之裁罰。我國無論金融業、航運業、航空運輸業、電子製造業及進出口貿易業者等,均或有於歐盟成員國境內或歐洲經濟區(European Economic Area)當地設立子公司或營業據點。因此,在GDPR法遵衝擊的倒數時刻,指派具瞭解GDPR規定、當地個資隱私法遵規範、擅長與隱私執法機構溝通及充要語言能力者專責法遵業務實刻不容緩。蓋此舉可避免我國企業母公司鞭長莫及,未能及時處置而致罹法典之憾。 二、全面檢視個資業務流程,完備個資盤點與風險評鑑作業,掌握企業法遵現況   企業應全面檢視業務流程,先自重要核心業務中析出個資作業流,搭配全面個資盤點,並利用盤點結果進行風險評鑑,再針對其結果就不同等級之風險採行相對應之管控措施。此外,於全業務流程中,亦宜採行最小化蒐集原則,避免蒐集過多不必要之個人資料,尤其是GDPR所定義之敏感個資(如:種族、民族血統、政治觀點、宗教信仰、哲學信仰、工會會員資格等個人資料,及遺傳資料的處理,用於識別特定自然人之生物識別資料、健康資料、性生活、性取向等)或犯罪前科資料,俾降低個人資料蒐集、處理、利用、檔案保存及銷燬之全生命週期流程中的風險。此舉亦契合我國個人資料保護法第5條所揭櫫之原則。 三、立法要求一定規模以上之企業須通過個資隱私法遵第三方認(驗)證,並建置認證資訊公開平台   鑒於國際法遵衝擊以及隱私保護要求之標準線日漸提升,我國企業除自主導入、建置並維運相關個資保護與管理制度以資因應,更有賴政府透過法令(如:修正個人資料保護法)強制要求一定規模以上之企業通過第三方專業驗證,俾消弭風險於日常準備之中。蓋我國具一定規模以上企業,無論其係屬何種業別,一旦違反國際法遵要求,遭致鉅額裁罰,其影響結果將不僅止於單一企業,更將嚴重衝擊該產業乃至於國家整體經貿發展。職是,採法律強制要求企業定期接受獨立、公正及專業第三方認(驗)證,咸有其實益性與必要性。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP