美國2015年「消費者隱私權法案」簡介

刊登期別
第27卷第6期
 
隸屬計畫成果
經濟部技術處產業科技創新之法制建構計畫成果
 

本文為「經濟部產業技術司科技專案成果」

※ 美國2015年「消費者隱私權法案」簡介, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7066&no=64&tp=1 (最後瀏覽日:2025/11/24)
引註此篇文章
你可能還會想看
IBM釋出500項專利

  IBM送大禮給開放原始碼軟體開發商,全美專利龍頭IBM宣布,釋出500項專利供軟體開發業者使用。此舉顯示IBM的智慧財產權策略有重大改變,而高科技產業同時將面臨挑戰。   IBM有意藉此在開放原始碼軟體開發業間建立專利共享的風氣,IBM資深副總凱利(John E. Kelly)表示,此舉是跨出一大步,希望其他人能追隨IBM做法,讓共享的專利能愈來愈多。另一位副總史托凌(Jim Stallings)指出,此舉是美國史上截至目前最大宗的專利開放案,意在鼓勵其它公司釋出專利以刺激科技創新。與此同時,美國專利商標局公布了去年度專利核發紀錄,IBM以獲得3248項專利勇冠全美,並將連霸紀錄推向連續12年,IBM去年度新添專利數量硬是比第二名的松下電器多出1314項。   IBM這次釋出的五百項專利,其領域涵蓋儲存管理、模擬多重處理、影像處理、資料庫管理、網路連結和電子商務。該公司希望透過此一開放授權計畫帶動開放原始碼軟體開發業的合作風氣,這有利將問題轉化成一個交流平台,也有助改良IBM的發明。   過去,IBM曉得利用專利授權創造更大利潤,這十年來IBM靠專利賺來的錢一直是勇冠全球,即使這次開放五百項專利,仍有數以千計的專利繼續為IBM賺取大筆佣金。大量開放專利的舉動造就IBM以較寬鬆定義重新詮釋專利法的先驅地位,評論家認為,這十年來的專利法改革侷限了軟體開發者的創新自由度,不再像促成個人電腦革新和網路革命的時空背景那般自由。IBM表示,該公司仍是專利的所有人,依舊保留運用專利對抗商用軟體製造商的權利。

Google關鍵字廣告在美國贏得重要勝利

  美國聯邦法院近日判決Google販售含Rosetta Stone的關鍵字廣告,並不會造成Rosetta Stone商標的混淆而構成侵權,同時也沒有商標淡化、輔助侵權以及侵權的連帶責任等問題。   在Rosetta Stone與Google一案(Case No. 09cv736, E.D. Va., 8/3/10)的判決中,法院並未再著墨於過去十年來爭論不休的關鍵字廣告販售是否構成商標使用的問題;在本案中,法院假定Google的行為構成潛在可訴的商標使用,在沒有事實爭議的情況下做出對Google有利的即決審判(summary judgment)。判決中認定Google販售Rosetta Stone關鍵字廣告給第三人,並不會對Rosetta Stone的商品來源造成混淆,法院認為Google的使用者可以分辨實際的搜尋結果,以及廣告主的贊助廣告連結。   法院也認定Google對於Rosetta Stone商標的使用受到功能性原則的保護。在本案中法院認為Google的關鍵字扮演著必要的指示功能,並影響廣告的成本與品質。如果沒有這樣的功能,Google將必須為希望鎖定在目標客戶的廣告主創造一個沒效率的搜尋系統。   而過去6個月近200個案例中,Google都在接到Rosetta Stone的通知後,將相關訊息移除,因此,法院援引近期Tiffany 與eBay一案(600 F.3d 93, 2d Cir. 2010),認為Google對於贗品販售者購買關鍵字廣告的一般性認知,尚不足以構成輔助侵權的主觀認知要件。   另外,法院認為僅僅廣告購買的交易關係,並不足以讓Google與贗品之間建立起侵權的連帶責任,就像時代廣場的廣告看板租用一樣,沒有證據顯示提供廣告空間的Google掌控這些贊助廣告的外觀與內容;而在2004年Google開始開放以商標作為關鍵字廣告之後,Rosetta Stone的聲譽持續成長,法院表示無法證明Rosetta Stone的商標因為Google關鍵字廣告販售而淡化。   本案的判決可能終止長久以來對於以商標作為搜尋引擎關鍵字的爭議,儘管商標權人在Rescuecom與Google一案(562 F.3d 123, 2d Cir. 2009)中確認了這樣的行為構成了可訟的商標使用行為,但這樣的行為是否構成侵權仍有待進一步的檢驗,而近五年來Google的關鍵字廣告販售已經變成普遍的商業型態,而Google使用者也越來越習慣分辨一般搜尋結果與贊助廣告的差異,因此,對於這樣的行為要被認定為有混淆誤認之餘而構成侵權,商標權人在美國恐怕還有一段辛苦的路要走。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

化學奈米 將改善人類生活

  為勾勒人類未來生活型態,英國將在新堡( New Castle )投入約新台幣 150 億元建立一科學城,預定五年內整合化學、奈米、微機電及醫療技術整合。這座科學城是一座整合科學及產業技術的場所,由業界及政府共同支持,科學城內將成立三大研究機構,分別進行幹細胞研究、老年人健康、分子工程,及環境能源的改善。   英國皇家工程院院士雷蒙奧立佛( Raymond Oliver F.R.Eng )是這座科學城的主要規劃人,他指出,人類生活在下一個 20 年將出現四項結構性的現象:一是人口老化,二是個人化產品的普及,三是智慧型生活空間的出現,四是再生能源出現。面對這四大現象的普及,化工業者可以找到兩個發展方向,一是利用化學來提高醫療生活品質;二是利用化學來創造更自然的智慧型生活空間。   以醫療生活品質而言,化學可以進一步和幹細胞研究結合,並透過奈米技術發展出奈米級醫療電子產品,包括影像攝影取代藥物的人體臨床實驗,或是透過紅外線體外照射,讓硫化鎘等化學藥物能在體內直接殺死癌細胞 ; 在奈米材料方面,雷蒙指出,已有廠商研究出適合老人駕駛的汽車,這類汽車從空調、氣味,到生理資訊的偵測,都能配合老人較易疲勞的體質去設計。

TOP