美國2015年「消費者隱私權法案」簡介

刊登期別
第27卷第6期
 
隸屬計畫成果
經濟部技術處產業科技創新之法制建構計畫成果
 

本文為「經濟部產業技術司科技專案成果」

※ 美國2015年「消費者隱私權法案」簡介, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7066&no=64&tp=1 (最後瀏覽日:2026/01/09)
引註此篇文章
你可能還會想看
歐盟透過生態創新(Eco-innovation)減少小客車之二氧化碳排放量

  小客車(passenger car)排放之二氧化碳(CO2)約佔全歐洲排放總量之12%。為落實歐盟第443/2009號規則(Regulation (EC)No 443/2009)關於減少輕型交通工具CO2排放所設定之新小客車排放表現標準,歐盟執委會於今年(2011)7月25日通過執委員會第725/2011號規則(Commission Regulation(EU)No 725/2011,以下簡稱執委會規則),就汽車製造商對CO2減排所為之生態創新(eco-innovation)科技之評鑑、核准及驗證給予更明確之規範,亦提供更多誘因。   於執委會規則下所認定之生態創新,係指就車輛本質之運輸功能及整體能源消耗有重大改善,且該創新技術(特別是在動力技術方面)於市場上屬未廣泛應用者。此外之附帶目的或旨在提升駕駛或乘客乘坐舒適度之技術,則不在其認定之範圍內(如胎壓監測系統、輪胎轉動阻力、排檔指示、使用生質燃料等,皆不得認定為生態創新)。   汽車製造商及供應商皆得提交申請書,該申請書應有足以證明其符合各項標準之必要證據,包括測定該項創新科技對CO2減排之方法。在證明其CO2減排之成效方面,應就相同車輛使用該技術與否進行比較且其測試方法應屬可供驗證、可得重覆且可資比較者。執委會規則要求CO2減排成效最低應達1gCO2/km。關於驗證,執委會規則要求由獨立驗證機構為之。驗證單位被要求於驗證報告中提供相關證據以證明其與申請者間之獨立關係,以確保其獨立性。歐盟執委會本身亦得於有證據顯示實際驗證之減排量與經認可之生態創新技術之減排量不符之情況下,再次驗證個別車輛之總減排量,但其應提供製造商一定期間以證明認可之價值屬正確者。   早在2007年歐盟所提議之立法中,即對於小客車設定了排放效能之標準,該項立法亦於2009被歐洲議會及歐盟理事會所採納,可謂歐盟試圖改善汽車燃料之經濟性及確保歐盟小客車之平均CO2排放不超過130 gCO2/km之基石。實則於今年(2011)初,歐盟執委會亦設下於2050年前,減少導致地球暖化之交通排放氣體達1990年之60%之計畫。至於上述執委會規則中所取得之碳權,皆將納入歐盟碳排放交易計畫中,新綠色科技最高可抵7gCO2/km之排放,預計將就新車平均排放量於2015年前達到130gCO2/km之目標,執委會規則也預計於同年進行檢視,其實際運作情形及後續發展皆值得予以觀察。

歐盟創新採購機制觀測

美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

德國聯邦卡特爾署針對電動車公共基礎設施產業進行調查,以釐清相關競爭法問題

  德國聯邦卡特爾署(Bundeskartellamt)於2020年7月9日公布,將針對電動車公共基礎設施產業進行調查,以釐清目前市場相關競爭法問題。   聯邦卡特爾署署長Andreas Mundt表示,建立全國性的充電基礎設施是德國電動車成功的先決條件之一,目前電動車充電基礎設施產業尚處於早期市場發展階段,因此,釐清市場是否有不正競爭問題,方能使電動車充電基礎設施布建能迅速擴張。在公共場所充電的條件和價格,也將影響消費者是否決定改用電動車。然而在目前市場發展階段時,已收到越來越多關於充電站價格和條件的投訴。   根據聯邦政府的計畫,2030年前德國將於全國範圍內布建大規模的充電基礎設施,其中包括公用的充電基礎設施。雖然充電站之布建及營運,不適用例如高壓電網擴建加速法、電網擴張法等與電網相關法規之適用。但可依德國不正當競爭防止法(Gesetz gegen den unlauteren Wettbewerb, UWG)拘束該領域可能存在的競爭法議題。除了應確保非歧視性地近用充電站外,更應研擬充電站相關使用條款,以確保充電站能正常營運。此外,並應研究城市及地方政府是否有提供合適的充電站位置,及其對充電站營運商之間的競爭影響。另外,聯邦高速公路上充電站之市場競爭狀況亦為聯邦卡特爾署關注的議題。   聯邦卡特爾署將於兩個調查階段中,向利害關係人進行產業調查。第一階段,將確定公共收費充電基礎設施的建設狀況,以及城市及地方政府和其他參與者,在規劃和提供充電站合適位置的現行作法。並在此基礎上,進行第二階段深入調查,特別針對有關移動服務提供商和使用者近用充電站的問題。

TOP