美國公民自由聯盟控告兒童線上保護法侵害言論自由

     美國公民自由聯盟(American Civil Liberties Union, ACLU)在挑戰一網際網路審查法案—「兒童線上保護法(Child Online Protection Act, COPA)」的訴訟中獲得勝利。美國公民自由聯盟聲稱,1998年頒布的兒童線上保護法立意雖是為了防止兒童在網際網路上接觸到色情內容,但卻違反了美國憲法,也損害了數以百萬計成年網際網路使用者的言論自由。這個案件被視為對網路言論自由限度的重要檢測指標。


        該法案中要求所有商業網站在允許使用者瀏覽那些有害未成年人的內容時,必須以信用卡號碼或其他方式來證明使用者的年紀。此外,在該法案中,那些製造有害未成年人內容的業者每日必須支付最高五萬美元的罰款,以及最多六個月的牢獄之災。美國公民自由聯盟認為,該法案有效杜絕色情網頁的比例甚至不到五成,而最高法院也表示,如可透過像過濾軟體或類似技術來達到防止未成年人接觸網路色情內容的目的,則法律限制的必要性則有待商榷。

相關連結
※ 美國公民自由聯盟控告兒童線上保護法侵害言論自由, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=707&no=0&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
問題在號碼?(下)---談網路電話服務(VoIP)號碼核配與網路互連管制問題

美國藥品學會建議調整HIPAA隱私權規範以兼顧醫療研究及隱私保護

  隸屬美國科學院(National Academy of Sciences)之藥品學會(Institute of Medicine)於2009年2月4日發表一份研究報告,指出美國醫療保險可攜及責任法的隱私權規範(HIPAA, Privacy Rule),對於醫療研究中有關個人健康資訊之取得及利用的規定未盡周全,不僅可能成為進行醫療研究時的障礙,亦未能完善保障個人健康資訊。   在目前的規範架構下,是否允許資訊主體概括授權其資料供後續研究利用,並不明確;另外,在以取得資料主體之授權為原則,例外不需取得授權但必須由審查委員會判斷其妥適性的情況下,亦未有足夠明確的標準可資審查委員會判斷依循,此些問題不僅使得醫療研究中之資料取得及運用,產生若干疑慮,亦突顯個人相關健康資料保護之不足。   該報告建議國會應立法授權主管機關制訂一套新的準則,將個人隱私、資料安全及資訊運用透明化等標準,一體適用於所有醫療相關研究的資料取得及利用上;在未來的新準則中,應促進去名化醫療資訊之運用,同時對於未取得資料主體授權的資料逆向識別(re-identification)行為,應增設罰則;此外,審查委員會在判斷得否不經資料主體授權而以其資料進行研究之妥適性時,亦應納入道德考量因素,倘若研究係由聯邦層級的組織所主導,則研究團隊應先證明其已採取充分保護資料隱私及安全的措施,藉以平衡隱私權保護與醫療研究的拉鋸。

人工智慧專利加速審查計畫

  人工智慧專利加速審查計畫(Accelerated Initiative for Artificial Intelligence,又稱AI2)是新加坡智慧財產局(Intellectual Property Office of Singapore, IPOS)於2019年4月宣布之計畫,目的在於加快與人工智慧相關的專利申請程序。該計畫自2019年4月26日開始實施兩年,每年有50位名額。專利申請權人申請適用該計畫並申請專利者,最快可在6個月內審核通過並授證。   適用AI2計畫之技術主體需與AI發明領域密切有關,該申請案之AI功能包含自然語言學習(Natural Language Processing)、影像辨識、聲音辨識、自動化系統(Autonomous Systems)、機器人、預測分析(Predictive Analytics)等;並須應用在生命科學、醫學、農業、資通訊、交通等領域。   AI2與新加坡智財局2018年實施的「金融科技專利優速計畫」(FinTech Fast Track Initiative, FTFT)類似,FTFT旨在加速金融科技領域之專利申請及審查時效。除了技術主體不同,兩者在申請和審查程序上大致類似:不需支付額外的申請與審查費用、該項專利之首件申請案需於新加坡智財局提出、專利請求項(claims)最多為20項、該項專利之「請求專利核准」與「請求專利檢索審查」文件需於同一日提交、專利申請權人收到實質審查意見書需兩個月內回覆等。   人工智慧是新加坡轉型為數位經濟國家的關鍵,隨著全球AI專利申請活躍,新加坡智財局支持將AI產品更快地推向市場,並期望有利新加坡爭取更多新創企業及投資。

FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。   2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。   根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

TOP