資通訊安全下之訊息分享與隱私權保障—簡析美國2015年網路保護法

刊登期別
第27卷,第8期,2015年08月
 
隸屬計畫成果
經濟部技術處產業科技創新之法制建構計畫
 

本文為「經濟部產業技術司科技專案成果」

※ 資通訊安全下之訊息分享與隱私權保障—簡析美國2015年網路保護法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7083&no=0&tp=1 (最後瀏覽日:2026/02/01)
引註此篇文章
你可能還會想看
澳洲政府發布「國家 AI 計畫」 將採用科技中立的AI治理模式

澳洲工業、科學及資源部(Department of Industry, Science and Resources)於2025年12月2日發布「國家AI計畫」(National AI Plan),擘劃了澳洲至2030年的AI發展藍圖,將「掌握機遇」、「普及效益」與「確保人民安全」列為三大發展方向。該計畫將透過基礎建設投資、人才培育、產業支持,以及強化監管能力等途徑,打造一個更具競爭力、包容性與安全性的 AI 生態系統。 國家AI計畫的另一個重點在於,澳洲政府打算透過現有的法律監管架構治理AI,而不另立AI專法。此舉是回應澳洲生產力委員會(Productivity Commission)於8月提出之建言:政府在推動創新與訂定規範時必須取得平衡,應暫緩推動「高風險 AI 的強制護欄(mandatory guardrails)」,僅有在現行制度無法處理AI衍生之危害時,才有必要考慮制定 AI 專法。 據此,國家AI計畫指出,面對AI可能造成的危害,現有制度已有辦法進行處理。例如面對使用AI產品或服務的爭議,可依循《消費者保護法》(Australian Consumer Law)取得權利保障;AI產品或服務的風險危害,亦可透過《線上安全法》(Online Safety Act 2021)授權,制定可強制執行的產業守則(enforceable industry codes)來應對。澳洲政府未來也將推動《隱私法》(Privacy Act 1988)修法,意欲在「保護個人資訊」與「允許資訊被使用及分享」之間取得適當平衡。 同時,由於採用分散式立法的關係,澳洲特別成立「AI 安全研究院」(Australian AI Safety Institute, AISI),以強化政府因應 AI 相關風險與危害的能力。AISI將協助政府部門內部進行監測、分析並共享資訊,使部門間能採取即時且一致的治理政策。 澳洲政府曾在2024年9月研議針對高風險AI進行專門的監管,但因擔心過度立法恐扼殺AI發展轉而採用「科技中立」的監管方式,以既有法律架構為基礎推動AI治理。此與歐盟的AI治理邏輯大相逕庭,未來是否會出現現行制度無法處理之AI危害,抑或採用現行法制並進行微調的方式即可因應,值得持續觀察。

Google宣告關閉西班牙Google新聞服務

  搜尋引擎巨人Google在西班牙施行新著作權法前關閉該國的Google新聞服務。西班牙將於2015年1月正式施行新著作權法,新法中出版商將可向新聞内容聚合平台業者(news aggregator)徵收授權金,且著作權人不得約定不行使該權利。新法中並未明定新聞内容聚合平台業者如Google新聞與Yahoo新聞應支付的授權金額,但卻規定違反此法令的公司需繳付75萬美金的罰款。   近年來,歐盟各國如德國、法國相繼推行新著作權法,讓著作權人得向新聞内容聚合平台業者徵收授權金,而Google則透過與出版商約定不行使該權利作爲因應措施。而由於西班牙此次的新法規定著作權人不得約定不行使該權利,導致Google首次因法規而關閉該國的Google新聞服務。   Google表示此項新法規要求出版商向Google新聞徵收授權金,哪怕它只是一則小小的摘要。Google新聞的總監Richard Gingras表示Google新聞並未含任何廣告亦無實際盈利;相反地,該服務為出版商帶來超過百萬的讀者流量。新法規的施行將增加Google新聞的營運成本,因此才在新法規施行前關閉西班牙版本的Google新聞服務。   此舉將造成當地網路媒體與出版業者的網路流量損失,爲此西班牙新聞媒體組織 (The Spanish Association of Daily Newspaper Publishers, AEDE)發表聲明希望西班牙政府、歐盟當局及反托拉斯聯盟能介入調解此次Google新聞的關閉事件,以保護人民與企業的權利。   新法施行在即,究竟Google新聞的關閉會對此次西班牙新著作權法的施行造成何種影響值得後續關注。

美國專利與商標局推出COVID-19專利優先審查領航計畫

  因應嚴峻的新冠肺炎,美國專利與商標局(United States Patent and Trademark Office, USPTO)於2020年5月8日公布「COVID-19專利優先審查領航計畫」(COVID-19 Prioritized Examination Pilot Program)。本領航計畫的法源依據是《美國專利法》第1.183條,授權局長在極特殊的狀況下,更改專利審查規則。本專利優先審查領航計畫之重點有二:其一,原本優先審查必須繳交相關的費用,本計畫針對小型或微型機構給予免費優待。其二,優先審查以12個月內完成最終處置(Final Disposition)為目標,並期待在6個月內完成。所謂最終處置包含:寄出核准領證通知(the mailing of a notice of allowance)、寄出最終核駁通知(the mailing of a final Office action)、請求延續審查(the filing of an RCE)、放棄申請(abandonment of the application)、提出上訴通知(the filing of a Notice of Appeal)。   美國專利與商標局局長Andrei Iancu表示:「獨立發明人與小型企業創新能力不亞於大企業,固有必要在對抗大型全球流行疾病給予有利的援助。為此,美國專利與商標局政策上給予小型或微型機構優先審查的程序優待,企盼加速其所提出之新冠肺炎相關的專利審查。」本計畫適用對象僅限於合於條件的小型或微型機構(Small or Micro Entity)。按美國專利審查程序指南(Manual of Patent Examining Procedure, MPEP)第509.02及509.04條,所謂小型機構係指個人、少於500人之公司、非營利組織和大學;微型機構則是指該機構作為申請人或投資人,其前一年年收入,少於美國家庭年收入中位數的三倍。   本專利優先審查領航計畫的專利請求項,必須是美國食品藥品監督管理局(United States Food and Drug Administration, FDA)批准,用以預防或治療新冠肺炎的產品或方法,包含但不限於:試驗用新藥(Investigational New Drug, IND)申請、臨床試驗器材豁免(Investigational Device Exemption, IDE)、新藥申請(New Drug Application, NDA)、生物製劑許可申請(Biologics License Application, BLA)、上市前許可(Premarket Approval, PMA)或緊急使用授權(Emergency Use Authorization, EUA)。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP