行政院發布公告「中小企業增僱員工薪資費用加成減除辦法」

刊登期別
第27卷,第7期,2015年07月
 
隸屬計畫成果
中小企業新興科技及產業之法制整備推進計畫
 

※ 行政院發布公告「中小企業增僱員工薪資費用加成減除辦法」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7098&no=64&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
英國OFCOM計畫推出適用於不同內容之分級識別標誌

  英國財政大臣Gordon Brown在倫敦的一場演講中指出,OFCOM現正研擬制定一套適用於各種不同媒介之內容的分級識別標誌。未來不論電視節目、廣播節目、電影、電腦遊戲或者網站內容都可適用該分級識別系統,以幫助父母為家中的孩童過濾不適當的內容,保護孩童在數位化的時代仍可以遠離不適合的媒體內容。   在該場演講中,Gordon Brown 表示,身處在數位時代,父母越來越難掌握孩童所接觸的內容是否適當,但是在無法扭轉科技的進步前提下,應當善加利用新科技並使父母得以透過各種新科技繼續保有為孩童選擇適當的內容之控制權。   OFCOM的發言人僅透露該套分級識別系統不僅適用於所有種類的媒體內容,而且將以文字方式描述各種內容,例如特定內容之裸露程度為何,以作為視聽大眾決定是否接收該內容前的參考。另外,不同於現行的電影分級制度乃是以年齡作為不同等級內容的分級標準,未來OFCOM所推出的分級識別系統將無關乎年齡。不過OFCOM亦表示該分級識別系統的詳細內容目前尚未決定,仍在討論階段。   除了制定一套適用於所有內容的分級識別系統之外,OFCOM未來亦將透過電視廣告以及要求ISP業者配合向消費者宣導各種過濾軟體,以便消費者得以過濾網路上之色情猥褻或暴力之內容。

日本「個人編號(マイナンバー)」制度遭受違憲的質疑

  日本政府基於(1)行政的效率化(2)提升國民便利性及(3)實現公平、公正的社會等目的,於2015年10月以後開始分發記載國民姓名、住址、性別、個人編號等相關資訊的「通知卡(通知カード)」,日本民眾藉著通知卡至各地相關單位申辦正式「個人編號卡(マイナンバーカード)」,並於2016年01月正式開始實行。   然而此項制度在施行之初即爭議不斷,住在東京、大阪等地的156名居民於2015年12月01日向東京、仙台、新潟、金澤、大阪共五個地方法院提起民事訴訟,請求日本政府停止蒐集、利用並且刪除個人編號,同時要求給予每人十萬日圓的損害賠償。原告訴狀以日本年金機構受到網路攻擊而有125萬件個人資料流出為例,認為現今關於個人編號制度的行政機關及民間企業的安全防護對策並不充分,主張有極高洩漏「關於稅務及社會福利個人資料的危險性」,同時主張個人編號制度並未取得本人同意即蒐集個人資訊,侵害憲法第13條保障的「控制自我資訊的權利」,亦即隱私權及人格權。   2003年開始正式啟動的 「住民基本台帳網路系統(住民基本台帳ネットワーク)」先前也被提起類似訴訟,惟最高法院認定「制度或系統尚未不備、並沒有侵害隱私權」而認定合憲。本案原告律師團則認為住民基本台帳網路系統僅有行政機關接觸到個人資料,而個人編號制度則連民間企業都能接觸到個人資料,因此原告律師團的水永誠二律師即表示:「個人編號制度和住民基本台帳網路系統相比規模更大。就算住民基本台帳網路系統被認定合憲,也不構成個人編號制度合憲的理由。」   儘管本件訴訟的勝訴效力僅及於當事人,不會立刻決定個人編號制度存廢。惟若能動搖該制度適用於所有擁有住民票的人的前提,則日本政府將被迫重新檢討個人編號制度,本訴訟的後續發展值得繼續觀察。

何謂日本「大學共同利用機關法人」

  所謂「大學共同利用機關法人」,係指日本於《國立大學法人法》(国立大学法人法)中,以設置大學共同利用機關為目的,依該法之規定設置之法人。而所謂「大學共同利用機關」,依該法之規定,則係指有關在該法所列舉之研究領域內,為促進大學學術研究之發展而設置,供大學院校所共同利用之實驗室。日本利用大學共同利用機關法人之設置,將大型研發設施設備,以及貴重文獻資料之收集及保存等功能賦予大學共同利用機關,並將其設施及設備,提供予與該大學共同利用機關進行相同研究之大學教職員等利用。   目前登錄於日本文部科學省之大學共同利用機關法人包括了「大學共同利用機關人類文化研究機構」(大学共同利用機関法人人間文化研究機構)、「大學共同利用機關自然科學研究機構」(大学共同利用機関法人自然科学研究機構)、「大學共同利用機關高能量加速器研究機構」(大学共同利用機関法人高エネルギー加速器研究機構),以及「大學共同利用機關資訊與系統研究機構」(大学共同利用機関法人情報・システム研究機構)等四者。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP