論數位經濟下研究報告開放近用及著作權例外國際新發展

刊登期別
第27卷第10期 ,2015年10月
 
隸屬計畫成果
經濟部技術處產業創新體系之法制建構計畫成果
 

本文為「經濟部產業技術司科技專案成果」

※ 論數位經濟下研究報告開放近用及著作權例外國際新發展, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7109&no=64&tp=1 (最後瀏覽日:2025/04/02)
引註此篇文章
你可能還會想看
日本政府決定採用共通編號制的三個方案,也會顧及消費稅的逆進性

  日本政府於6月29日召開關於賦予國民每一個人一個編號以便掌握每個人所得的「共通編號制度」的檢討會,會中決定將以利用於納稅與社會保障給付為軸心,朝引進制度推動的三種選擇方案。會中也討論到利用於減緩使低收入群負擔愈加沈重的消費稅的「逆進性」上。目前提出相關方案也有緩和參議院改選中有關增稅批評的目的。 從之後的1個月內會開始募集國民的意見後,到年底會將三種方案綜合為一案,以明年的一般國會會期中提出相關法案的方向推動。   有關共通編號制度,當然被指出會有個人資訊外洩與侵害隱私權的憂慮。菅直人首相在檢討會中提到「希望是立於國民本位制度上的來思考,也必須得到國民大眾的瞭解」。在檢討會中承認僅供稅務使用的A案、用於稅務與社會保障的B案及用於大範圍的行政領域上的C案,使用範圍各自不同的三種方案。   也出現希望所賦予的新編號能與目前正在使用中的「住民票號」能夠接軌的想法。利用編號制度正確掌握國民的所得情形,進而在增加消費稅之時,就有可能適切地對低收入群進行減稅與用現金補助。   消費稅是對包含生活必需品等大範圍的物品及服務課稅,所以愈是對將收入用於消費的比例龐大的低收入群會對增稅的負擔愈感沈重。 對減緩此一逆進性的有效制度,就是對有繳納的所得稅給予減稅,沒繳納所得稅的給予現金補助的「附給付的稅額扣減」。充分利用編號制度,將可補足反映所得所能退補的金額。

Deloitte 智財調查報告指出企業多重視營業秘密但缺乏管理意識與具體管理措施

據2024年1月5日IAM報導(下稱IAM報導)依據Deloitte 2023年的研究報告(Deloitte IP 360 Survey)指出大部分的企業雖然有認知到營業秘密對於企業而言承載重大的價值,但仍通常缺乏管理的意識和具體措施,然而對於企業來說營業秘密管理卻是具有重要性的。 IAM報導綜整了一篇Deloitte 2023年的研究報告(Deloitte IP 360 Survey,下稱系爭報告),其針對橫跨15個國家、5大產業共57間公司的智慧財產管理成熟度進行調查分析,系爭報告指出大部分的企業針對專利、商標等註冊取得之智慧財產權多擁有成熟且全面的管理措施,但針對其他難以發現的無形資產(“hard-to-find” intangibles),如營業秘密、資料、know-how等,通常缺乏管理的意識和措施,例如:大約有29%的受訪者表示企業「未積極地捕獲」(原文為actively capture,大意指識別、管理和保護)營業秘密;約14%的受訪者表示企業未建立標準化流程或方針以識別營業秘密。並且,針對營業秘密的具體管理作法,IAM報導特別著重以下三點: 1.主動監測:僅僅只有25%的受訪者表示,企業有主動監測營業秘密之產出,並具有相關管制措施。 2.教育訓練:有42%的受訪者表示未受過營業秘密意識的訓練(trade secret awareness training)。IAM報導特別指出,若員工對於營業秘密的範圍以及重要性沒有概念,則營業秘密管理機制的建立也會失去其意義。 3.離職面談:即使有相當大比例的營業秘密訴訟源於離職員工,但在既有離職面談中是否有納入營業秘密意識訓練的調查上,僅有不到一半(47%)的受訪企業表示有做,24%的企業表示沒有做,還有29%的企業不確定是否有做。 綜上所述,系爭報告提出,許多企業在營業秘密的管理上仍有很大的進步空間,並提醒,在訴訟上只有營業秘密擁有者採取「合理保密措施」(包括建立標準化機制)來保護營業秘密時,在法律上才能獲得更大的保護以及獲得損害賠償的機會。 針對營業秘密管理制度建置,企業可參考資策會科法所發布之「營業秘密保護管理規範」,該規範從識別營業秘密開始,到營業秘密使用管理、員工管理(包含人員進用離職時應採取措施、教育訓練)等均有相關要求,可協助企業透過PDCA循環建置系統性營業秘密規範,補足缺乏的營業秘密管理意識和具體保密措施。 本文同步刊登於TIPS網(https://www.tips.org.tw)

國際間科學專家利益衝突管理規範趨向-以美、歐藥品審查機構科學諮詢委員會專家利益衝突解決政策與機制為例

歐盟執委會提出「具可信度之人工智慧倫理指引」

  歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。   該指引並進一步指出人工智慧應遵守以下四項倫理原則: (1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。 (2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。 (3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。 (4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。

TOP