從美國政府責任署建議國防部應改善其處理智慧財產的方式初探美國國防部之智財管理 資訊工業策進會科技法律研究所 2022年2月15日 根據美國政府責任署(U.S. Government Accountability Office,下稱GOA)於去(2021)年12月發布的報告指出,美國國防部(U.S. Department of Defense,下稱DOD)對智慧財產的管理能力不足,可能降低任務準備程度並導致維運軍武的成本飆升[1]。本文將簡介GOA報告的發現,聚焦於DOD的智財管理情況,藉此一窺美國國防部的智財管理模式。 壹、事件摘要 美國國會於2018年通過《國防授權法案》(National Defense Authorization Act,簡稱NDAA),裁示DOD建立智財取得及授權政策,DOD據此訂定其智財指令、規劃智財權責單位、人員及相關培訓機制,嗣後國會於2021年委請GAO檢視DOD之智財指令及其執行情況。 貳、重點說明 一、DOD的智財指令 DOD依據以下智財相關法規,設定其智財指令,如:使小型企業、大學和其他非營利組織可保留其發明之專利權的《拜杜法》(Bayh-Dole Act)[2]、授予無論規模大小所有聯邦締約方全部或部分由聯邦資金所獲得的專利權之12,591號行政命令[3],以及要求DOD應訂定相關規範以解決和締約方間技術資料的相關權利之《國防採購改革法案》(Defense Procurement Reform Act)[4]等,並強調六項核心原則[5]: 1.將智慧財產權規劃整合到採購策略中,以考量對競爭力和可負擔性的長期影響。 2.確保採購專業人員具備履行公務所需的相關智財知識,以支援智財採購規劃期間內進行關鍵的跨職能協調。 3.對智財可交付成果和相關授權進行特別協商,相較標準授權能更有效地平衡DOD和產業界間的利益。 4.就預期智財和維運目標與產業界進行明確有效的溝通。 5.尊重和保護私部門和政府資助的智慧財產權。 6.政府必須確保締約方所交付之智財成果和有相應的授權。 二、GAO檢視DOD之智財指令執行結果 應國會要求,GAO對DOD的智財指令進行通盤檢視,並對智財權責單位、人員及負責培訓之機構展開調查,訪談相關人員指令的實際執行情況,其檢視結果如下: (一)DOD的智財指令不足以促進其取得智財的製程細節或處理資料權利之能力 DOD智財指令雖整合取得、授權智財的相關法規和指引等要求,並強調其核心原則,然該指令和DOD其它相關的內部指令仍未有更明確的內容可解決取得細部製程或處理資料權利的問題。DOD通常會為其新銳軍武器系統-包含電腦軟體、技術資料、用戶手冊等取得或註冊智財權,而DOD智財指令所指的技術資料,是包括任何科學或技術性質的記錄資訊,如:產品設計或維護資料和電腦軟體檔案(含:執行程式碼、開源碼、程式碼清單、設計細節、流程、流程圖等);但常未同步取得用於運行和維護武器系統的智財,如:細部製程或技術資料等[6],倘若未及早取得或獲得相關授權,可能影響軍武系統的操作和維護,從而影響武器的競爭力,並增加管理成本[7]。 實際上,GAO已接獲因技術資料取得問題而對任務有不良影響的報告:2021年7月F-35計劃因維修供應商取得的技術資料不足以滿足維護需求,使關鍵的引擎維修時間比預期的更久;2020年3月部分海軍艦艇計劃的維護作業也因缺乏技術資料出問題,而上述情況若在計畫前期就確認包含技術資料和細部製程等所需智財,並在採購過程中及早規劃取得,可因此節省後續衍生的數十億美元維護成本[8]。 (二)DOD尚未為智財人員訂定完善的策略、人員配置規劃和投注足夠的資源,以充分履行智財指令所規定的廣泛職責 根據GOA的調查與訪談相關人員,智財人員在以下情況都面臨不確定性: 1.資金和人員配置 DOD目前計劃在2023財會年度前,為智財主任及其在國防部長辦公室(Office of the Secretary of Defense,下稱OSD)的團隊提供五個職位的資金,但其中四個為臨時職位,這可能在招聘人才的過程中造成反效果,不利於未來的人員配置。 2.連結其他計劃專家支援不足之處 OSD的智財人員希望DOD中其他計畫的智財專家庫能提供支援,協助訂定智財策略並與承包商進行談判等事宜,但DOD尚未針對 OSD智財團隊將如何和其他專家合作提出具體作法。 3.專業知識 DOD的智財指令指出智財人員應該具備:採購、擬定契約、工程學、法律、後勤、財務分析以及估值等領域的專業知識,但受訪談的人員表示,該部門目前在智財權估值和財務分析這兩個關鍵領域仍有不足,仍須進行補強[9]。 (三)智財培訓涵蓋多項活動但未安排優先順序,且未具體確定哪些人員應該接受培訓 DOD的智財培訓由其設立的美國國防武獲大學(Defense Acquisition University,又譯為國防軍需大學,下稱 DAU)執行,該大學專為國防相關之政府人員、承包商提供採購、技術和後勤等專業培訓[10]。為改善智財培訓,DAU展開為5年期的智財策略計畫,計有60多項活動待執行,但該策略計劃缺乏重點,沒有排出活動的優先順序,也未具體提出DOD的哪些智財人員應該接受培訓[11]。 (四)DOD須致力發展追蹤已取得/授權智財之後續使用情況的能力 DOD目前的智財指令指示相關政府單位須管理智財相關的契約及智財文件,以避免在採購智財及其相關授權時重複採購,或隨時間流逝而喪失智財權,然而根據訪談結果,相關人員表示DOD採購極大量的智財或相關授權,但不具備追蹤各個智財獲授權使用情形的能力[12]。 三、GAO對DOD的建議 GAO彙整其檢視DOD智財指令執行情況的結果後,對DOD提出下列四個建議[13],建議內容不外乎是指定與智財管理相關的重要項目須指定負責人,且該負責人須為對應智財相關單位的較高管理階層,確保待改善項目有監督與執行者。 (一)完善智財指南 採購及維護次長(The Under Secretary of Defense for Acquisition and Sustainment)應確保DOD智財指南已闡明DOD人員將如何取得細部製程或技術資料。 (二)確保跨部門合作與資源連結 國防部長(The Secretary of Defense)應確保部長辦公室和各部門所需的合作、人員配置和資源,以連結各計畫智財相關專家、人員。 (三)確認智財活動優先順序 採購助理部長(Assistant Secretary of Defense for Acquisition)應確保智財主任(Director of the IP Cadre)與DAU主席合作,為DAU在2023年至2025年間主責與智財相關活動確定優先順序。 (四)確保智財培訓效益 採購助理部長(Assistant Secretary of Defense for Acquisition)應確保智財主任訂定補充指引,以協助部門負責人和採購職業管理主任(Director of Acquisition Career Management,DACM)確定國防部人員在關鍵專業領域接受之智財培訓和取得的證書能使其有最大的獲益。 參、事件評析 綜觀GAO的檢視結果,雖然DOD的智財管理仍有改善空間,但以足見美國聯邦政府對其智財管理之重視程度,不僅指示部會自行管理智財,更透過部會外的公正單位,從規範到組織實際執行情況進行通盤檢視;而部會內部對於智財管理的程度,已經從訂定和整合智財相關規範,進一步到落實在日常任務中,不只重視部會所需技術本身的智財取得或保護,更欲推進到策略計劃前期,將維護軍武相關的細部製程和技術資料等相關內容及權利也納入採購範圍,甚至為此盤點智財所需的專業能力、規劃培訓專門人員,以促進智財管理的量能,其對智財管理深化及重視的程度值得我國借鏡。 [1] GAO, Defense Acquisitions: DOD Should Take Additional Actions to Improve How It Approaches Intellectual Property, (Nov. 30, 2021), available at https://www.gao.gov/products/gao-22-104752 (last visited Feb. 7, 2022) [2] The Patent and Trademark Law Amendments Act of 1980 (Bayh-Dole Act), 35 U.S.C.§§ 200–211, 301–307. [3] President’s Memorandum to the Heads of the Executive Departments and Agencies,Government Patent Policy (Feb. 18, 1983); Exec. Order No. 12,591, § 1(b)(4), 52 Fed. Reg. 13,414 (Apr. 10, 1987) [4] Defense Procurement Reform Act, 1984, Pub. L. No. 98-525, § 1201. [5] Supra note 1, 17-18. [6] Id., 7, footnote 21. [7] Id., 1. [8] Id., 1. [9] Id., 24-28. [10] DAU, About DAU, at https://www.dau.edu/about (last visited Feb., 7, 2022) [11] Id., 29-30. [12] Id., 32-33. [13] Id., 33-34.
歐盟EDPB認為防範Cookie疲勞應確保資訊透明及簡化歐盟資料保護委員會(European Data Protection Board, EDPB)於2023年12月13日回覆歐盟執行委員會(European Commission, EC)有關Cookie協議原則草案(Cookie Draft Pledge Principles)之諮詢。該草案旨在處理「Cookie疲勞」(Cookie fatigue)所造成的隱私權保護不周全之處。 在電子通訊隱私指令(ePrivacy Directive)以及GDPR規範下,由於現行同意機制複雜,造成用戶對Cookie感到疲勞,進而放棄主張隱私偏好。 為了避免「Cookie疲勞」,EDPB提出以下原則和建議,大致可以分為三點: 一、簡化Cookie不必要的資訊 1.基本運作所需之Cookie(essential cookies)無需用戶同意,故不必呈現於同意選項,以減少用戶需閱讀和理解的資訊。 2.關於接受或拒絕Cookie追蹤的後果,應以簡潔、清楚、易於選擇的方式呈現。 3.一旦用戶拒絕Cookie追蹤,一年內不得再次要求同意。 二、確保資訊透明 1.若網站或應用程式的內容涉及廣告時,應在用戶首次訪問時進行說明。 2.不僅是同意追蹤的Cookie,用於選擇廣告模式的Cookie,仍需單獨同意。 三、維持有效同意 1.應同時顯示「接受」和「拒絕」按鈕,提供用戶拒絕Cookie追蹤的選項。 2.在提供Cookie追蹤選項時,除了接受全部的廣告追蹤或付費服務外,應提供用戶另一種較不侵犯隱私的廣告形式。 3.鼓勵應用程式提前記錄用戶的Cookie偏好,但強調在用戶表達同意時必須謹慎處理,預先勾選的「同意」不構成有效同意。 EC表示,該草案目的在於簡化用戶對Cookie和個人化廣告選擇的管理,雖然為了避免Cookie疲勞而簡化資訊,仍應確保用戶對於同意Cookie追蹤,是自願、具體、知情且明確的同意。將於後續參考EDPB之建議,並與利害關係人進行討論後,制定相關法規。
英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險 資訊工業策進會科技法律研究所 2024年03月11日 人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。 壹、事件摘要 英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。 AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。 貳、重點說明 AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容: 一、AI保證之適用範圍: (一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。 (二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。 (三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。 (四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。 二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。 (一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。 (二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。 (三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。 三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。 (一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。 (二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。 (三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。 (四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。 (五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。 (六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。 四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項: (一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。 (二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。 (三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。 (四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。 (五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。 五、建構AI保證的步驟(Steps to build AI assurance) (一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。 (二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。 (三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。 (四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。 (五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。 參、事件評析 AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。 隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。
英國通過《資料(使用與存取)法》,提升資料使用的便利性2025年6月19日,英國《2025年資料(使用與存取)法》(Data(Use and Access)Act 2025,下簡稱DUA法)正式生效。DUA法的宗旨是在《英國一般資料保護規則》(United Kingdom General Data Protection Regulation, UK GDPR)的基礎上,放寬在特定情形下執法機關、企業與個人使用資料的限制,以提升資料管理及使用的便利性。 DUA法預計將於2025年8月開始分階段實施,重點如下: (1) 放寬自動化決策(Automated Decision-Making, ADM)條件:依據UK GDPR規定,個人有不受純粹基於自動化處理且產生法律效果或類似重大影響之決策所拘束之權利。此項規範確立自動化決策之原則性禁止,僅於符合特定例外事由時始得為之。DUA法則放寬此一限制,未來企業只要確保有向當事人提供自動化決策的資訊、決策結果申訴的管道,以及得人為干預設計之保障措施以後,即可做出對個人有重大影響的自動化決策。 (2) 資料主體存取請求權(Subject Access Request, SAR)規範明確化:當事人有權向持有自身個資的單位請求查閱,DUA法明訂組織在收到請求後應回應的時間,而當事人請求的範圍也應合理且合於比例,避免組織浪費人力搜索不重要的資訊。 (3) 建立有效申訴管道:規定任何使用個人資料的組織都必須設立有效的申訴機制、提供電子化申訴管道、並回報處理結果,若訴求未獲得解決,當事人即可向英國資訊專員辦公室(Information Commissioner’s Office, ICO)提出申訴。 (4) 科學研究得採概括同意機制,商業研究亦屬適用範疇:DUA法明確指出,基於科學研究目的,研究人員於確保適當個人資料保護措施之前提下,得以概括同意(broad consent)方式取得當事人之同意,以利進行科學研究活動。DUA法並明確界定科學研究之範疇可涵蓋商業研究(commercial research),擴大其適用領域。 (5) 允許網站直接使用Cookie:網站與應用程式的儲存與存取技術(Storage and Access Technologies)在低風險情況下,可不取得使用者事前同意,即紀錄使用者瀏覽紀錄。 DUA法將於2025年8月開始分階段實施。如何在科技發展的便利性與個人資料的安全性間取得平衡,是當代社會不容忽視的議題,可持續觀察追蹤英國施行DUA法的成效供我國參考。