2015年11月3日德國杜塞道夫地方法院(以下稱德國法院)依據歐盟法院之《華為訴中興》案(Huawei v ZTE case, 16 July 2015, Case C- 170/13)的先決裁判發出第一例禁制令(Cases 4a O 144/14) (Nov. 3, 2015)。這個判決係義大利公司SISVEL公司認為青島海爾德國公司(以下稱海爾公司)侵害其有關GPRS及 UMTS無線網路專利組合之標準專利,並已經對海爾公司發出專利侵權通知,並發出授權要約,海爾公司則抗辯認為,SISVEL僅通知其母公司而未通知其分公司,且其授權要約不符合FRAND原則。
德國法院認為,SISVEL只要將足夠的專利侵權資訊及授權要約通知海爾母公司進而據以判斷是否與SISVEL展開授權協商即可,若要求專利權人亦須一一通知其分公司,則將流於形式。
其次,海爾公司雖因認為SISVEL要求之授權金過高,故拒絕SISVEL的授權要約並提出反向要約,但卻未在提出反向要約後之合理期間內依據歐盟法院在《華為訴中興》案先決裁判中之見解,對SISVEL提供保證金以擔保其授權協議尚未達成前對SISVEL專利之使用費用。故德國法院進一步對前述合理期間給予確切期間,即拒絕專利權人要約時起一個月內。
至於海爾公司主張SISVEL授權要約不符合FRAND原則之抗辯,德國法院認為因海爾公司未履行前述程序,故尚無須判斷SISVEL授權要約是否FRAND原則。故何種情形屬於符合FRAND原則,仍留由後續之實務見解加以補充。
本文為「經濟部產業技術司科技專案成果」
在眾多反對聲浪下,英國政府仍然發佈了包含爭議性斷網條款的數位經濟法案,該法案賦予國務大臣要求ISP業者對於疑似非法侵權檔案分享者斷網之權力,在沒有法院介入審查的前提下,得要求ISP業者對於涉嫌侵權的使用者斷網。法案公布後持續引發眾多反彈聲浪。 ISP業者如:TALK TALK以及BT等,都對於這項規定持續表達反對的立場。ISP業者認為此一作法不但有違無罪推定的原則,且對於ISP業者而言,也增加了行政與費用上的負擔;但相對的,音樂唱片業者則表現出樂見其成的態度,認為此一規定將有助於英國音樂產業的永續發展。 雖然法案內容大多來自於以振興英國數位經濟為目的Digital Britain報告,但斷網的作法並不是該報告所提出的建議。英國商務大臣Mandelson表示,此一條款將保護英國創意社群免於受到網路侵權的威脅,並獲得應有的報酬,同時也提供新的選擇給網路消費者。 歐盟希望透過電信產業規範的重整,禁止成員國通過未經法院審查的斷網條款,要求斷網必須要有先行程序,但給予成員國的卻是像設定三振條款作法的彈性,不見得是斷網法院審查前置的程序,因此,歐盟的相關指令對於英國的斷網規定未必會有阻擋的效果。
日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
英國上議院人工智慧專責委員會提出AI應用影響報告並提出未來政策建議英國上議院人工智慧專責委員會(Select Committee on Artificial Intelligence)2018年4月18日公開「AI在英國:準備、意願與可能性?(AI in the UK: ready, willing and able?)」報告,針對AI可能產生的影響與議題提出政策建議。 委員會建議為避免AI的系統與應用上出現偏頗,應注重大量資訊蒐集之方式;無論是企業或學術界,皆應於人民隱私獲得保障之情況下方有合理近用數據資訊的權利。因此為建立保護框架與相關機制,其呼籲政府應主動檢視潛在英國中大型科技公司壟斷數據之可能性;為使AI的發展具有可理解性和避免產生偏見,政府應提供誘因發展審查AI領域中資訊應用之方法,並鼓勵增加AI人才訓練與招募的多元性。 再者,為促進AI應用之意識與了解,委員會建議產業應建立機制,知會消費者其應用AI做出敏感決策的時機。為因應AI對就業市場之衝擊,建議利用如國家再訓練方案發展再訓練之計畫,並於早期教育中即加入AI教育;並促進公部門AI之發展與布建,特別於健康照顧應用層面。另外,針對AI失靈可能性,應釐清目前法律領域是否足以因應其失靈所造成之損害,並應提供資金進行更進一步之研究,特別於網路安全風險之面向。 本報告並期待建立AI共通之倫理原則,為未來AI相關管制奠定初步基礎與框架。
美國紐約州長簽署電動車充電樁安裝法案,以實現零碳排放車輛之目標2022年11月22日紐約州長Kathy Hochul簽署一項新法案(S.8518A /A.6165A),旨在消除在私人財產上安裝電動車充電樁之障礙,以實現紐約州零碳排放車輛之目標。 該法案允許民眾在家中安裝充電站,並要求屋主協會(Homeowner Association,HOA,類似我國社區管理委員會)如欲拒絕屋主申請安裝電動車充電樁,須提出書面詳細說明理由,如於 60 天內未提出,除非是因為HOA合理要求其補正資料所致,否則屋主的申請即視為許可。紐約州欲透過該法案提升車主於住處安裝電動車充電樁數量,進而提高電動車使用率。 紐約州於2021年已立法(A.4302/S.2758)要求自2035年起販售新車皆需為零碳排放車輛,期許至2050年可達85萬輛零碳排放車輛。透過各項電動車相關政策之推動,2021年紐約州電動車銷售量大幅增長,截至2022年9月全州已超過11.4萬輛電動車上路,電動車充電站超過1萬座。 對此,我國立法院法制局於2022年6月發布「社區設置電動車充電設備問題之研析」報告指出,社區仍應以用電安全第一,不宜強制設置充電樁,現階段宜規定電動車廠商應設置充電設備或更換電池的設施,如要修正「公寓大廈管理條例」強制社區設置電動車的充電設備,建議優先修正「建築法」或「建築技術規則」加強設置該設備安全要求。