2016年生物支付技術將可能取代傳統支付型態

  根據美國公共電視台在2016年1月6日的新聞,指出生物支付將可能成為新興支付工具。生物支付之定義為利用生物辨識(biometric)技術驗證個人生物特徵,諸如:指紋、虹膜等進行支付。採用生物支付技術,未來將無須使用信用卡或行動裝置,僅需要個人生物特徵之辨識即可完成交易。此轉變將使未來交易更加快速、便利,但同時,生物支付的安全性卻也不無疑義。

  即便生物辨識屬於高層級的資訊安全保護機制,但水能載舟,亦能覆舟。生物辨識利用生物不可變之特性進行身分識別,涉及高度個人隱私,為妥善保護個人資訊安全,需訂立生物辨識相關規範加以管制,否則將衍生許多法律問題。

  例如:在2015年6月,美國線上出版商Shutterfly公司被控訴違法蒐集個人資料。原告稱其並非Shutterfly公司之註冊使用者,也從未同意其生物辨識資訊被該公司蒐集,但其面紋(Face print)卻被上傳至該公司網站,並標註姓名,儲存在自動針對相片標記臉部辨識系統之資料庫。

依據BIPA針對生物辨識定義及蒐集規範:

1.第10條:
生物辨識之態樣,包含視網膜、虹膜掃描、指紋或是手部、臉部外觀之掃描,但不包括簽名、照片、用於科學檢測之人體樣本、頭髮顏色等。
2.第15條(a):
規定公司蒐集個人生物特徵資訊應有相關規範供公眾查閱,並應提供生物辨識資訊之保管及銷毀日期及相關資訊。
3.第15條(b)(1):
蒐集生物辨識資訊應告知當事人。

  Shutterfly公司提出要求法院不受理之抗辯,主張BIPA規定之臉部外觀,其文意解釋應為物理上個人親自接受掃描所得之資訊,並非原告所主張以照片辨識之臉部外觀,但法院認為Shutterfly之主張並不合理,因此同意受理此案。

  觀察該案可發現,儘管生物辨識提高資訊安全之保護,但相關法規範解釋仍待實務完備。另一方面,生物特徵資訊極易被他人蒐集,因此,如何建置蒐集個人辨識資訊及完善相關措施,也是推行生物支付措施所需突破的關口。

相關連結
※ 2016年生物支付技術將可能取代傳統支付型態, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7139&no=64&tp=1 (最後瀏覽日:2026/02/19)
引註此篇文章
你可能還會想看
英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

德國「新車輛及系統技術」補助計畫第二期

  「新車輛及系統技術」(Neue Fahrzeug- und Systemtechnologien)補助計畫係德國為確保汽車產業能夠在未來保持其技術領先地位所規劃的研究補助方案,該計畫從2015年6月起為期4年,聚焦車輛本體設計及車聯網技術解決方案;2018年11月,有感數位化變革所帶來的壓力,以及聯網自動駕駛顛覆未來交通面貌的潛力,德國聯邦經濟及能源部(BMWi)決定將前述計畫延長4年至2022年12月31日,並追加補助金額至每年6000萬歐元,促進聯網自動化駕駛及創新車輛領域的相關研發,具體鎖定的項目包含:(1)創新感測技術與傳動系統(2)高精度定位技術(3)迅速、安全、可靠的通信協作技術(4)創新資料融合及資料處理程序(5)人車互動技術(6)配套的測試程序與認證(7)電動車搭載自動駕駛功能的具體解決方案(8)透過輕量化提升能源效率技術(9)空氣動力學優化技術(10)創新動力推進技術。聯邦政府希望藉由第二輪的「新車輛及系統技術」補助計畫,協助歷來引以為傲的汽車工業克服資通訊技術革新、氣候保護趨嚴及能源效率要求所帶來的挑戰,全力避免此一德國重要經濟命脈淪為數位化浪潮下的犧牲者。

淺析企業如何善用無形資產獲取商業利基

談我國基因改造生物田間試驗管理規範之現況與修正方向

TOP