根據美國公共電視台在2016年1月6日的新聞,指出生物支付將可能成為新興支付工具。生物支付之定義為利用生物辨識(biometric)技術驗證個人生物特徵,諸如:指紋、虹膜等進行支付。採用生物支付技術,未來將無須使用信用卡或行動裝置,僅需要個人生物特徵之辨識即可完成交易。此轉變將使未來交易更加快速、便利,但同時,生物支付的安全性卻也不無疑義。
即便生物辨識屬於高層級的資訊安全保護機制,但水能載舟,亦能覆舟。生物辨識利用生物不可變之特性進行身分識別,涉及高度個人隱私,為妥善保護個人資訊安全,需訂立生物辨識相關規範加以管制,否則將衍生許多法律問題。
例如:在2015年6月,美國線上出版商Shutterfly公司被控訴違法蒐集個人資料。原告稱其並非Shutterfly公司之註冊使用者,也從未同意其生物辨識資訊被該公司蒐集,但其面紋(Face print)卻被上傳至該公司網站,並標註姓名,儲存在自動針對相片標記臉部辨識系統之資料庫。
依據BIPA針對生物辨識定義及蒐集規範:
1.第10條:
生物辨識之態樣,包含視網膜、虹膜掃描、指紋或是手部、臉部外觀之掃描,但不包括簽名、照片、用於科學檢測之人體樣本、頭髮顏色等。
2.第15條(a):
規定公司蒐集個人生物特徵資訊應有相關規範供公眾查閱,並應提供生物辨識資訊之保管及銷毀日期及相關資訊。
3.第15條(b)(1):
蒐集生物辨識資訊應告知當事人。
Shutterfly公司提出要求法院不受理之抗辯,主張BIPA規定之臉部外觀,其文意解釋應為物理上個人親自接受掃描所得之資訊,並非原告所主張以照片辨識之臉部外觀,但法院認為Shutterfly之主張並不合理,因此同意受理此案。
觀察該案可發現,儘管生物辨識提高資訊安全之保護,但相關法規範解釋仍待實務完備。另一方面,生物特徵資訊極易被他人蒐集,因此,如何建置蒐集個人辨識資訊及完善相關措施,也是推行生物支付措施所需突破的關口。
英國之胚胎幹細胞研究活動,係根據「1990年人類受精與胚胎學法」(Human Fertilisation and Embryology Act 1990,HF&E Act)和「2001年人類受精與胚胎學規則」(Human Fertilisation and Embryology (Research Purposes) Regulations 2001,Research Purposes Regulations)之規定,授權由「人類受精與胚胎學管理局」(Human Fertilisation and Embryology Authority,HFEA)依法管理。 新堡大學東北英格蘭幹細胞中心(North East England Stem Cell Institute)Lyle Armstrong博士,在去年底向HFEA申請一項涉及混合人類與動物細胞製造胚胎幹細胞之研究許可;其計劃利用細胞核轉置技術,將牛的卵子細胞核取出,植入人類體細胞核,並刺激其分裂形成胚囊或早期複製胚胎,用以研究培養病患所需身體組織之技術。過去HFEA從未曾核准過此類研究,僅核准過2件利用細胞核轉置技術和單性活化卵母細胞製造胚胎幹細胞株作為醫學研究之申請。此研究申請訊息一流出,即引起保守團體嘩然及指責,要求英國政府應盡速立法,禁止製造人獸混合細胞之實驗活動。面對各界抗議聲浪,HFEA表示,會暫緩此申請案。 事實上,去年12月英國健康部提出了一篇報告-「人工生殖及胚胎學法之檢討」(Review of the Human Fertilisation and Embryology Act),建議國會應儘速立法規範人類動物細胞混合研究。而英國政府與人民究竟能否接受混合人類動物遺傳細胞研究之合法性、合道德性,則為未來立法動向之重要指標。
論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心論科學資料之開放與共享—以美國國家衛生研究院之資料政策為核心 資訊工業策進會科技法律研究所 蔡立亭 2020年12月25日 科學研究以提升全人類之福祉為本,醫療健康研究資料的共享,有助於促進整體科學研究的量能。為促進由政府支持之科學資料與研究發現的近用,美國政府原則上肯定科學之發展與資料之留存、近用相關,資料之公開不僅應遵守法律之限制,尚應注意資料之生命週期,並訂定時限;受政府資助之研究,所產出之資料以免費近用為原則,政府之政策亦應考量國際合作之實際情況[1]。申言之,科學研究資料的近用,有助於提升科學發展,政府於制定共享政策的同時,亦應一併考量國際合作的情況,並以免費近用為原則,研議資料公開策略。 為增進科學資料的效益,美國國家衛生研究院(National Institutes of Health,簡稱NIH)設置科學政策辦公室(Office of Science Policy,簡稱OSP)制定完整的政策,領域擴及生物安全、基因檢測、基因資料共享、人類受試者保護、NIH的組織與管理,和受NIH資助研究的成果與價值;藉由廣泛的分析與報告,提出新興政策建議[2]。在科學資料共享的層面,NIH聚焦於「基因與健康」和「科學資料管理」,生物醫學研究的進展,取決於科學資料的近用;共享科學資料,有助於驗證研究結果,研究者整合資料以強化分析,提升難以生成資料的再次應用,加速研究進展[3]。NIH藉由資料的管理,促進科學資料的近用,以驗證並共享研究成果。 為輔助資料之開放共享,NIH公告資料管理與共享政策(NIH Policy for Data Management and Sharing,以下簡稱DMS政策),目的為促進由NIH資助或進行研究的科學資料共享[4]。DMS政策將科學資料定義為:「在科學社群普遍接受記錄事實的素材,研究發現能反覆的驗證,不論該資料是否用以支持學術出版物。科學資料並不包含實驗室筆記、初步分析、完整的個案報告表、科學報告的草稿、未來的研究計畫、同儕評論、與同事的溝通、物理實體,例如實驗室標本[5]。」。換言之,並非僅以該資料是否能佐證學術出版物為科學資料之認定基準,而係以該科學資料是否屬事實之記載,和研究成果能否反覆驗證為判斷。 另,NIH、NIH研究院、中心、辦公室已有資料預期的共享,如:科學資料的共享、相關標準、資料庫的選擇、時限,適用並於計畫中呈現;若不適用則研究員應在計畫中提出資料共享與管理的方式,NIH並建議資料的管理與共享應實踐FAIR(Findable、Accessible、Interoperable、Reusable)原則,共享的資料類型,首先為一般性的描述、估計在研究中生成或使用的科學資料,次為列出後設資料等有助於解釋科學資料的文件;NIH鼓勵科學資料盡快共享,不遲於資料的出版或執行期間[6]。申言之,即使各該研究計畫不適合既有的共享策略,於計畫提案時,研究團隊仍應研擬適合共享與管理的方式,並以FAIR原則為依準。 研究團隊提供的科學研究資料,將儲存於由政策或資助方指定的資料庫。NIH提出推薦的資料庫列表[7],並描述理想的儲存資料庫特色為:「具有獨特且永久的識別碼、具有長期持續管理資料的計畫、設置後設資料、整理資料並保證品質、免費並簡易的近用、廣泛且可估計的重複使用、明確的使用指引、安全性與完整性、機密性、共通格式、引用機制,及資料保留策略[8]」。由此觀之,資料庫的設計應易於科學資料的檢索;並在資料的近用上,維護資料之安全、完整、機密等。 NIH共享資料之實際應用上,為共享基因研究資料,NIH於2014年提出基因資料共享政策(Genomic Data Sharing Policy,以下簡稱GDS政策),包含NIH資助指南與契約;NIH的GDS政策適用於所有NIH資助的研究,生成之大規模人類或非人類之基因資料,將應用於後續的研究[9]。藉此能有效率的推動基因研究向前邁進。 GDS政策課予研究者提供基因資料的義務;研究者近用基因資料,亦應遵守基於研究使用控制近用資料(Controlled-Access Data)的條款[10]。研究人員受NIH核准後,方能將NIH控制近用的資料,應用於第二次研究(secondary research)[11]。由NIH資料近用委員會(Data Access Committee)審查,研究員近用資料並須遵守基於研究使用控制近用資料的條款[12]。另,基因摘要結果(Genomic Summary Results,以下簡稱GSR)隸屬於NIH政策[13],並依據GDS政策目的,將GSR定義為由研究者提供的摘要統計(summary statistics),非敏感性的資料列入NIH指定的資料庫中[14]。換言之,NIH以對控制近用資料的應用核准,在資料之限制近用與科學發展間,取得平衡。 為回應COVID-19,加速治療與疫苗的研發,NIH的資料共享與管理政策,緩解全球科學社群開放共享科學資料的需求,該政策並建立資料共享為研究過程的基礎成分[15]。綜上所論,將資料共享內化於研究過程中,有助於全球同步更新研究的進程,共同面對全人類之科學挑戰。 [1] NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, 整理自Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]資料庫列表請參見以下網址:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).
德國針對企業聯網資訊安全及資料保護相關法律提出建議文件德國經濟及能源部於2018年3月8日為企業聯網資訊安全保護措施建議及資料保護、資料所有權相關法規提出建議文件,協助中小企業提升對於組織及特別領域中的資安風險之意識,並進一步採取有效防護檢測,包括基本安全防護措施、組織資安維護、及法規,並同時宣導德國資料保護法中對於資安保護的法定要求。 資通訊安全及其法規係為企業進行數位化時,涉及確保法的安定性(Rechtssicherheit)之議題。例如:應如何保護處理後的資料?如何執行刪除個人資料權利?各方如何保護營業秘密?如果資料遺失,誰應承擔責任?唯有釐清上述相關等問題時,方能建立必要的信任。而在德國聯邦資料保護法,歐盟一般個人資料保護法、歐盟網路與資訊安全指令等規範及相關法律原則,係為數位創新企業執行資安基礎工作重要法律框架。但是,由於數位化的發展,新的法律問題不斷出現,目前的法律框架尚未全面解決。 例如,機器是否可以處理第三方資料並刪除或保存?或是誰可擁有機器協作所產生的資料?因此,未來勢必應針對相關問題進行討論及規範。鑑於日益網路化和自動運作的生產設備,工業4.0的IT法律問題變得複雜。一方面,需要解決中、大型企業的營業祕密,資料所有權和責任主題之實際問題,以促進相關數位化創新。另一方面,為了能夠推導出現實的法律規範,需要更多具體實施案例討論,例如,企業家對產品責任問題,人工智慧使用,外包IT解決方案,及雲端計算等核心等問題,政府應協助為所有公司在安全框架下展開數位計畫合作的機會,並充分利用網路的潛力,而中小企業4.0能力中心也將為中小型公司在數位化目標上提供IT法問題方面的支持。
世界智慧財產權組織發布「2019年全球創新指數報告」(GII)2019年7月24日,世界智慧財產權組織(World Intellectual Property Organization, WIPO)、美國康乃爾大學(Cornell University)、歐洲工商管理學院(INSEAD)共同發布「2019年全球創新指數報告」(Global Innovation Index 2019, GII)。GII報告每年度發行一份,希望幫助全球決策者更有效地制定政策及促進創新。本年度的報告主題是「創造健康生活─醫療創新之未來展望」,內容展望創新醫療,包括:導入人工智慧(artificial intelligence, AI)、基因體學(genomics)和健康醫療相關的手機應用程式,將會改變醫療照護。醫療創新無論是在診斷或預後,由於大數據、物聯網(Internet of Things, IoT)和人工智慧等新興科技的興起而改變。伴隨而來的是倫理、社會經濟等多方面、史無前例且迫切的挑戰。報告中提及幾項重要發現: 儘管經濟衰退,然而全球創新遍地成長,不可忽略保護主義對於全球創新的潛在風險。 創新版圖開始位移,中收入的經濟體開始嶄露頭角,值得一提的是以色列躋身第十名,而南韓也在前二十名的名單。 創新的投入和成果(innovation inputs and outputs)仍集中於特定少數經濟體和地區。 特定經濟體透過創新獲得的投資報酬率,大幅高過其他經濟體。 從「重量不重質」,蛻變為「重質不重量」,仍為改革的重要方針。 多數科學與科技的創新集中在美國、中國和德國。 需要更多的投資並將科技普及化,方能透過醫療創新打造健康生活。 GII依據80項指標評比129個經濟體,指出,全球創新指數最高的國家排名前五名為:瑞士、瑞典、美國、荷蘭、英國,均為高所得國家。中高所得國家創新指數前三名為:中國、馬來西亞、保加利亞;中低所得國家前三名為:越南、烏克蘭、喬治亞;低所得國家前三名則是:盧安達、塞內加爾、坦尚尼亞。至於區域性的創性領袖國是印度(中亞與南亞)、南非(撒哈拉以南非洲)、智利(拉丁美洲和加勒比海地區)、以色列(北非與西亞)、新加坡(東南亞、東亞與大洋洲)。最頂尖的自然與科技聚落所在國家為:美國、中國、德國;並特別指出巴西、印度、伊朗、俄羅斯、土耳其表現亮眼。最頂尖五大聚落是東京-橫濱(日本)、深圳-香港(中國大陸)、首爾(南韓)、北京(中國大陸)、聖荷西-洛杉磯(美國)。