2015年1月6日,美國聯邦地區法官裁定,猴子用照相機自拍,猴子無法取得自拍照的著作權。
英國攝影師Slater在四年前,讓黑冠猴Naruto使用其相機,成功的拍出了罕見的黑冠猴自拍照;而攝影師Slater後來把這些自拍照收錄在出版書中,並同時在網路上公開,並獲得廣大迴響。但之後維基百科(Wikipedia)收進免費圖片資源中,供大眾免費下載使用,Slater認為則認為這些照片的著作權已經被英國官方認可屬於Slater所開設的公司,此認可應適用於全世界。惟美國著作權局在2014年最新政策中,認為著作權登記僅適用「人類作品」,據此Naruto之自拍照並不受著作權保障。
而善待動物組織PETA(People for the Ethical Treatment of Animals)組織也加入了著作權爭奪戰局,其認為由Naruto所拍攝自拍照,其著作權應屬於Naruto,但由於Naruto不懂如何行使權利,故由PETA代為管理著作權,相關收益均會用於保護黑冠猴,並且向舊金山聯邦法院提出告訴。美國聯邦法院則在2016年1月6日判決,目前著作權法仍未將保護範圍擴張至動物作品上,故Naruto並未擁有該自拍照著作權,自無PETA代掌著作權可能;PETA接獲判決後表示會提出上訴。
經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
英國資訊委員辦公室(ICO)發布沙盒執行過程中所觀察到的關鍵議題2019年9月英國資訊委員辦公室(Information Commissioner's Office, ICO)啟動沙盒計畫(ICO Sandbox)測試階段(beta phase),由ICO所選10個測試專案,透過解決當今社會問題,例如如何減少暴力犯罪、大學如何促進學生的心理健康、新技術如何改善醫療保健等,期能促進公眾利益。 各專案在滿足創新性和可行性前提下,同時也面臨著複雜的資料保護議題,因此ICO持續與各專案溝通,提供其應用現有個資保護指引之建議,如歐盟一般資料保護規則之資料保護影響評估指導文件(Guide to the GDPR - Data protection impact assessment)、資料保護自我評估工具包(Data protection self-assessment toolkit)等。自2019年3月底開始(受理申請)迄今,ICO沙盒執行過程中所觀察到的關鍵議題如下: 公部門資料應用效益:部份參與者正在克服與公部門進行歷史資料共享,或是如何整合應用大數據等。個人資料與新技術應用,必須與資料主體的權利和自由進行權衡。 同意:確保各方對於「同意」(Consent)之理解,以弭平差異,同時向公眾提供透明資訊。 新技術的挑戰:應用語音生物辨識(voice biometrics)、臉部辨識技術(facial recognition technology, FRT)等,需要在適當基礎上處理特殊類別資料。 資料分析(Data analytics):以符合資料保護的方式進行資料分析,處理特殊類別資料的適法性,評估處理過程中的風險,並檢查可能用於資料分析的資料來源,確保符合目的之應用。 未來的6個月,ICO將持續與各專案合作,使其為有效的解決方案,為公眾提供創新合規之產品與服務,並成為未來結合資料保護和創新應用之規劃藍圖,以奠定隱私保護的基石。
德國擬提出風險資本參與法(Wagniskapitalbeteiligungsgesetz)協助創新與科技公司籌資德國聯合內閣最近就研議中的風險資本參與法(Wagniskapitalbeteiligungsgesetzes, WBG)之規範重點達成共識;聯邦經濟及技術部部長隨即對外表示,本法對於德國年輕的創新型企業意義非凡,蓋風險資本乃是創新與科技公司籌資的重要管道,WBG之制定是希望能創設成一個可以吸引國際風險資本在德國投資的法規環境。 根據協議內容,WBG以資本額在2千萬歐元以下、設立年限十年以下的公司為適用對象,據此,不僅是設立初期的公司可以籌募到風險資本,處在成長期需要大量資金的公司亦將可以獲得風險資本的挹注。此外,WBG也將規定,提供風險資本的創投公司(Wagniskapitalgesellschaften)未來將被視為資產管理者,其對於創投基金(Beteiligungsfond)提供資產管理服務之行為,將不會被課徵營業稅。 根據德國政府規劃,從法制面鼓勵創新與科技公司之設立,應採三軌並行:首先是創設吸引國際風險資金的投資環境,使創新與科技公司更容易取得所需資金,此即WBG之立法目的所在;其次,未來將進一步藉由開放投資管道,確保中小企業籌資之機會,因此有必要修正現行之投資企業法(Gesetz über Unternehmensbeteiligungsgesellschaften);最後將進一步制定投資風險規制法(Gesetzes zur Begrenzung der mit Finanzinvestitionen verbundenen Risiken),管控投資風險。透過上述措施,可望為創新與科技公司之設立奠定良善之基礎,增加此類型公司設立的數目。 德國內閣預計將在今(2007年)夏正式提出WBG之草案,與此同時,也將配套提出投資風險規制法之規範重點,並一併修正投資企業法,若WBG可順利經國會審議通過,最快將可自明(2008)年1月1日起生效適用。
自駕車之發展與挑戰-以德國法制為借鑑