德國聯邦網路局(Bundesnetzagentur) 法規問題研究工作小組(Wissenschaftlicher Arbeitskreis für Regulierungsfragen)於2015年11月18日提出「在OTT服務業者重要性提升背景下電信與媒體法制演變進程」意見報告(Evolution der Regulierung in den Telekommunikations- und Mediensektoren angesichts der Relevanzzunahme von OTT-Anbietern)。此報告針對OTT服務提出以下建議:
1. 是否電信服務(Telekommunikationsdienst)定義僅侷限於「電子信號的傳送」。倘若如此,是否亦須將OTT-I類型服務,亦即網路語音通話或電子郵件服務(例如:Skype, Gmail等),如同歸類並視電信服務而所規範。基於OTT-I服務的性質跟傳統通訊服務相似度很高(例如電話通訊服務),因此是否傳統電信服務定義須要涵蓋OTT-I服務,仍待明確的法制規範。
2. 倘若OTT-I種類的服務被歸類為「電信服務」,依此邏輯是否須要遵守德國電信法(Telekommunikationsgesetz)相關的傳統電信服務義務,像是緊急電話撥打義務、消費者保護、通訊隱私保障、資料保護等,仍待明確的法制規範。
3. 透過OTT服務所蒐集到的資料,均需透過明確的授權規範才得以讓OTT服務提供者有足夠的權限商業性的應用該資料。
4. 在OTT-II服務,亦即內容提供服務(Inhaltdienste)業者快速成長的背景下(例如Youtube,Netflix等),建議鬆綁歷來針對傳統影音媒體服務業者要求之嚴格廣告規範。
5. OTT-II內容平台需在公開網路上履行公平原則及反歧視原則。此原則亦應落實於終端設備使用者。
6. 支持歐盟資料保護規章的市場位置原則(Marktortprinzip)。
7. 電信法與媒體法在實體法上應更佳有所統合性。主管機關需符合憲法權限制訂法制規範,其規範亦必須符合其適當性(Zweckmäßigkeit)。
2023年7月知名社群網路服務平台Twitter基於品牌多角化經營考量(意圖進軍線上金融服務領域),Twitter執行長伊隆·馬斯克(Elon Musk)突然宣布全面變更品牌商標,經典「藍色小鳥」的商標標識改為黑白配色的「X」圖案(以下將該案例稱為「Twitter案」)。 實務上,企業可能於多種情況進行品牌商標之變更,例如:諾基亞(Nokia)因為希望向消費者表明其從手機公司轉型為商業科技公司的決心,故更換新商標,可見Twitter案的更名在科技業並不少見。重點在於品牌商標更名後,可能在商標法方面產生的風險。商標為指示品牌商品與服務來源的重要識別標識,在Twitter案中使用單一英文字母「X」作為新商標,在商標法上,一般被認為識別性較低,較難取得商標權,且其保護範圍可能也因此限縮於設計過的「黑白X標識」;其次,X作為一個常用的英文單字,較易產生與他人商標近似之風險,例如:微軟(Microsoft)公司2003年註冊與其遊戲系統Xbox通訊有關的X商標,或Meta公司自2019年起擁有藍白色彩的X字母商標,且註冊商標指定範圍也是社群媒體、軟體等。 為降低前述品牌商標爭議問題,建議企業由品牌標識設計、品牌全球拓展、品牌行銷宣傳三大階段,分別留意以下事項: 一、品牌標識設計階段:設計全新品牌標識或優化既有品牌標識前,事先評估品牌標識在商標法上是否具有識別性、是否與他人商標近似造成消費者混淆誤認等法定無法取得商標等風險,再決定是否維持原設計理念投入設計。如:Twitter案新商標X,除了透過品牌標識設計增加法律上的識別性,同時降低可能的侵權風險。 二、品牌全球拓展階段:如果預見可能侵權風險,則應加強爭議處理機制的建置,以利爭議發生時,及時採取因應措施。 三、品牌行銷宣傳階段:運用行銷手段加強品牌商標的「後天識別性」,如:透過投放廣告加強在消費者心中「黑白X標識」與品牌的連結等。 有關Twitter Inc.(現已併入X Corp.)的X品牌商標保護與布局策略,將會是後續值得關注的議題。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
Facebook 捲入商標糾紛Facebook公司因使用「timeline」一詞,而被設立於芝加哥的Timelines公司提商標侵權訴訟乙案,目前Facebook公司正積極準備進一步之辯護。 Timelines公司係於2011年9月控告Facebook侵害其所有之「timeline」商標權,且違反公平競爭法。Facebook則反訴Timelines公司,主張「timeline」為一般通用名稱,應不受商標法保護,故請求確認該商標無效且無侵權事實。 美國地方法院先前裁定Facebook無法提出證據以證明Timelines公司之商標為一般通用名稱。而原定2013年4月22日在芝加哥聯邦法院開庭之上訴程序,目前已延期,但法院並未明確說明延期原因。 Facebook公司主張「timeline」是一種可使人群組織並展現對其最有意義的事件與活動之工具,其功用係將記憶呈現為依時序整理,且可查詢之個人記述。Timelines公司則為一個,可讓使用者記錄並分享歷史經歷的網站。 Facebook在線上廣告市場上仍有巨幅成長的機會,因其具有廣泛的使用者基礎,且有跨時追蹤個人細節之能力,故在線上廣告市場中成為一股令人望之生畏的強大力量。 據報導,若將來判決對Timelines公司有利,則其打算請求總金額相當於Facebook因「timeline所取得之廣告收入」之損害賠償。由於至最終之審理結果出爐據信仍需要很長時間,故在現況下不排除庭外和解的可能性。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
「自動駕駛車(self-driving car)」可否合法上路?「自動駕駛車(self-driving car)」一般而言係指於汽車安裝感測器(sensors)以及軟體以偵測行人、腳踏車騎士以及其他動力交通工具,透過控制系統將感測到的資料轉換成導航道路,並以安全適當的方式行駛。其目前可分為兩類:「全自動駕駛車(full autonomous)」以及「半自動駕駛車(fully autonomous)」,全自動駕駛車係指可於指定地點出發後不需駕駛人(driver)在車上而到達目的地者之謂。全自動駕駛車又可為「用戶操作(user-operated)」與「無人駕駛車(driverless car)」。 目前包含賓士(Mercedes)、BMW、特斯拉(Tesla)等公司均預期於不久將來會發布一些具備自動駕駛特徵的車種,科技公司如Google亦對於自動駕駛車的科技研發不留餘力。 而從2012年開始,美國有17州以及哥倫比亞特區便開始在討論允許自動駕駛車上路的相關法規,而只有加利福尼亞州(California)、佛羅里達州(Florida)、內達華州(Nevada)及華盛頓哥倫比亞特區(Washington, D.C.)有相關法律的施行,其他州則尚未表態。而大部分的州傾向認為應由人類來操控(operating)汽車,但對於具體上到底有多少比例之汽車任務需由人類操控而多少比例可交由機器則尚有模糊空間。而是否肯認「人工智慧操控」符合法規之「人類操控」亦不明朗。不過在法律存有這樣灰色地帶時刻,Google搶先於加利福尼亞州進行測試其自動控制系統,期望之後於自動駕駛車逐漸上市普及後能搶占商機。