全球商務人士最喜愛使用的智慧型手機「黑莓機」,在今年(2011)10月中旬出現全球大當機,手機用戶無法上網及收發簡訊,影響範圍從歐洲擴及北美與世界各地。手機製造商Research In Motion (RIM)的首席執行長Mike Lazaridis在官網上以視訊公開向全球用戶道歉,並提出可免費下載100美元的應用軟體作為補償。然而此舉無法平息用戶的怒火,許多使用者正打算對RIM提出訴訟求償,因為中斷服務害他們錯失許多訊息與會議時間。 加拿大魁北克的高等法院就收到使用者對RIM要求經濟補償的集體訴訟,因為RIM所提出的補償措施根本無法彌補中斷服務數天的損失。若法院認同訴訟主張,RIM遭求償的總額或許很高,不過使用者提出的訴求是中斷服務的1.5天,他們無法使用月付25元加幣的無線網路服務,因此按比例分攤每件可能僅1.25元。而在美國的消費訴訟律師,則考慮對RIM提出違約訴訟或是消費詐欺,前者是以RIM未依約盡到其提供服務的責任為主張;而後者消費詐欺的重點則是著眼於,RIM導致消費者誤信黑莓機的可靠性。然而使用者所面臨的困難是,要如何證明他們所受到的損害,高於原本應獲得的服務,而且因為是全區域的服務中斷,在跨州的集體訴訟中還有各州法律適用的問題。有法律專家言明,要證明因為不能使用智慧型手機的功能而造成的實際損害非常困難,畢竟在緊急時刻,溝通(communicate)還有其他選擇方式。
美國FDA發布於海內外應對2019年新型冠狀病毒之行動聲明美國食品及藥物管理局(Food and Drug Administration, FDA)於2020年2月14日,發布於海內外應對2019年新型冠狀病毒之行動聲明,其包括: 主動監控供應鏈:由於疫情可能影響醫療產品供應鏈,FDA已與數百家藥品與醫療器材製造商保持聯繫,並與歐洲藥品管理局等全球監管機構保持同步,以評估監控潛在之製造中斷的警訊,且與生物製劑製造商聯繫,以評估有關原料之供應問題。若FDA確定醫療產品可能會短缺,則可能會採取與製造商緊密合作、加快對替代供應之審查等措施來防止短缺。 針對海外生產之FDA產品合規性之查驗與監控:FDA採取基於風險之模型來確認要進行查驗之公司,基於某些特定條件,會被認為具有較高風險之場所會被優先查驗,這些條件包括固有之產品風險、患者接觸產品之程度、過去查驗之歷史紀錄等等。除了查驗之外,其他防止不符FDA標準之產品進入美國市場之工具包括進口警示、增加進口採樣與篩查、替代查驗之紀錄要求(requesting records)。FDA可對市場上不合法之產品或違法之公司或個人採取監管與強制措施,例如警告信、扣押或禁制令。 消費品安全:美國海關暨邊境保護局將輸入美國、受FDA監管之產品交由FDA審查,其必須遵守與美國國內產品相同之標準,在FDA決定其可接受性之前不得將其分銷至美國。FDA並成立跨機關之專案小組,密切監控聲稱可預防、治療或治癒新型冠狀病毒疾病之詐欺性產品和虛假產品,並採取可能之執法行動。 對於診斷、治療與預防疾病之努力:FDA致力於促進安全有效之醫療對策的發展,提供法規建議、指導和技術援助,以促進針對用於此病毒之疫苗、治療和診斷測試之開發和可用性。FDA已核發緊急使用授權(Emergency Use Authorization, EUA),以便立即使用由美國疾病管制與預防中心所開發之診斷試劑,並已制定用於檢測病毒之EUA審查範本,其中概述申請EUA前所需之資料要求,目前已提供給表示有興趣開發該病毒之診斷工具之多位開發者。 後續行動:FDA將密切監視疫情並與跨部門合作夥伴、國際合作夥伴、醫療產品開發商與製造商合作,以幫助推進針對病毒之應對措施。
美國情報體系發布「情報體系運用人工智慧倫理架構」美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。