中國大陸國務院於2016/年2月18日國務院常務會議中確認支持科技成果移轉轉化政策措施及促進科技與經濟深度融合。
依據該會議決議,為提升創新主體的積極性,將鼓勵國家設立之研究開發機構、高等院校以轉讓、授權或作價投資等方式,向企業或其他組織轉移科技成果,並適用以下政策:
(1) 自主決定轉移其持有的科技成果,原則上不需審批或備案。鼓勵優先向中小微企業轉移成果。支援設立專業化技術轉移機構。(惟在境外實施方面,仍須依《科學技術進步法》第21條及《中國大陸國家科技重大專項知識產權管理暫行規定》第33條進行審批。)
(2) 成果轉移收入全部留歸單位,主要用於獎勵科技人員和開展科研、成果轉化等工作。科技成果轉移和交易價格要按程式公示。
(3) 通過轉讓或許可取得的淨收入及作價投資獲得的股份或出資比例,應提取不低於50%用於獎勵,對研發和成果轉化作出主要貢獻人員的獎勵份額不低於獎勵總額的50%。科技人員在成果轉化中開展技術開發與服務等活動,可依法依規獲得獎勵。在履行盡職義務前提下,免除事業單位領導在科技成果定價中因成果轉化後續價值變化產生的決策責任。
(4) 科技人員可以按照規定在完成本職工作的情況下到企業兼職從事科技成果轉化活動,或在3年內保留人事關係離崗創業,開展成果轉化。離崗創業期間,科技人員承擔的國家科技計畫和基金專案原則上不得中止。鼓勵企業採取股權獎勵、股票期權、專案收益分紅等方式,激勵科技人員實施成果轉化。
(5) 將科技成果轉化情況納入研發機構和高校績效考評,加快向全國推廣國家自主創新示範區試點稅收優惠政策,探索完善支援單位和個人科技成果轉化的財稅措施。更好發揮科技創新對穩增長、調結構、惠民生的支撐和促進作用。
本文為「經濟部產業技術司科技專案成果」
臉書(Facebook)於今年11月底與美國聯邦貿易委員會(FTC)就2009年的隱私權控訴案達成和解。該控訴案指出「臉書欺騙消費者其在臉書上的資訊可以保持隱私,然而卻一再任這些資訊被公開分享與使用」。舉例而言,在2009年12月,臉書改版時未預先通知使用者進行設定,導致使用者的朋友名單被公開。除此之外,擁有全球8億用戶的臉書,允許廣告商在臉書使用者點選廣告時,蒐集其個人身分資訊。另外,縱使臉書的使用者將帳戶刪除,其照片等等影音資料仍能夠被該公司讀取。臉書的這些行為被聯邦貿易委員會指出,這是不公正的詐欺行為(unfair and deceptive)。 聯邦貿易委員會最終與臉書達成和解,未施加任何罰緩,也未指控臉書蓄意地違反任何法規。依照和解內容,臉書必須要在接下來的二十年內,每兩年一次受獨立公正第三人稽核其隱私保護措施。但假設臉書在未來違反了這些和解條款,臉書將被處以每行為每日16,000美元的罰緩。推特(Twitter)以及谷歌(Google)近來也與聯邦貿易委員會達成了類似的協議。 聯邦貿易委員會要求臉書必須要取得使用者「確切的同意」才可以變更其本身的隱私使用設定。比如說,假設使用者設定某些內容只能供「朋友」讀取,臉書就不能夠把這些內容提供給「朋友」以外的人,除非取得使用者的同意。
防制洗錢金融行動工作組織針對虛擬資產與其服務提供業者發布進一步監理指引防制洗錢金融行動工作組織(Financial Action Task Force on Money Laundering, FATF)為因應虛擬資產(Virtual Assets)對於打擊洗錢與資恐主義措施所帶來的衝擊,協助各國建立可供遵循的一致性標準,於2018年10月修改FATF建議書(The FATF Recommendations),定義「虛擬資產」與「虛擬資產服務提供業者」(Virtual Asset Service Providers, VASPs),將其納入國際洗錢防制之範疇。 為使各國監管機關依據FATF相關建議,正確評估與降低虛擬資產與VASPs所可能涉及的洗錢與資恐風險,有效進行管理並建立公平競爭的虛擬資產產業體系,FATF於2019年6月21日,針對建議書中第15點-新科技所可能隱藏的洗錢隱憂,加入解釋性說明,列出FATF對於虛擬資產和VASPs的應用標準,包含建議監管機關採取註冊或許可制度,以利進行監督與審查,而非透過自律組織方式進行督導,並與他國進行國際合作。以及為防止不法份子與其同夥擁有對VASPs的控股權(controlling interest)或管理職能(management function),各國主管機關須採取必要的法律或監管措施。另監管機構應有足夠權力監督並確保VASP遵守打擊洗錢和恐怖主義融資的要求,包括進行檢查,強制公開資訊和實施金融制裁。 FATF同時公布「虛擬資產與虛擬資產服務商之風險基礎指引」(Guidance for a Risk-Based Approach to Virtual Assets and Virtual Asset Service Providers),指導各司法管轄區如何應用風險基礎方法,針對虛擬資產相關活動與服務商,進行洗錢與資恐防制。相關主管機構在進行風險評估時,應考量特定的虛擬資產類型或VASP活動,了解其具體架構與運作在金融體系和國家經濟的作用,以及對洗錢與資恐防制的影響,將類似風險的產品或服務應用類似的監理原則處理,並針對虛擬資產的匿名性加強客戶識別機制。隨著VASP活動發展,主管機關亦應審視其他監管措施(如消費者保護、資訊安全、稅務等)與洗錢與資恐防制之間的關聯,進行短期與長期的政策擬定,以制定全面性的監管框架。 FATF預計於2020年6月開始啟動上述新審查機制,為期12個月,檢視各國對於前述具體要求之落實情況。以及持續與民間企業合作,共同探討虛擬資產的基礎技術、使用類型、相關業務模式。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國FCC公布低功率電視強制數位轉換時程美國聯邦通訊委員會(Federal Communications Commission)於2011年7月15日公布第二份報告與命令(Second Report and Order),針對低功率電視(low power television, 簡稱LPTV)數位轉換時程進行規範,並預訂於2015年9月1日強制關閉低功率類比電視訊號的放送。 美國國會已於2009年6月12日強制關閉類比電視訊號的放送,但此規定僅適用於全功率電視台,並未及於低功率電視。所謂的低功率電視,為FCC於1984年針對在地性質的、小型的社區電視服務所創設的類型;這些社區有可能地處鄉野,但也有可能為大都會區內的個別社區。 FCC在這份命令中同時要求現行使用700Mhz頻段(channels 52-69)的類比與數位低功率電視台應在2011年9月1日前提交轉換規劃(displacement applications),並於2011年12月31日停止使用700Mhz頻段。