日本公平交易委員會就反托拉斯法下之智慧財產權之利用指南為部分修正

  於2016年1月21日,日本公平交易委員會(Japan Fair Trade Commission,下稱JFTC)公布了修正後的「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」,就有關標準必要專利權利行使有無違反反托拉斯法之相關問題進一步為解釋,俾利往後企業為商業行為時之參考。以下為其修正概要:一、當標準必要專利權人同意依據FRAND原則授權時,其若再提出訴訟要求排除有意願取得授權者(willing licensee)為該標準必要專利權之利用或是拒絕授權與有意願取得授權者時,該行為會被認定違反反托拉斯法。二、基於一般商業行為所為並善意進行商業談判者,會被認定屬有意願取得授權者(willing licensee),不論其之後是否就該專利有效性為爭執,或是對該專利是否屬實質必要專利為爭執。三、阻止他公司運用該專利進行研究、發展或販賣產品會被認定為不正商業行為,不論該行為是否在商品市場上產生限制競爭或獨占之結果。

  JFTC為了釐清行使智慧財產權時所可能面臨是否違反反托拉斯法之相關問題,於西元(下同)2007年9月8日發布「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」與「標準化與專利池協定指南(Guidelines on Standardization and Patent Pool Arrangements)」。標準必要專利(SEP)之相關爭議原則需依這些指南為判定,但這些指南對於一些表面上屬於權利行使(例如:標準必要專利之權利人所提起之侵權訴訟)的行為定性所提供的解釋卻十分有限。因此JFTC決定修改專利指南,並且公布草案予各方利害關係人表示意見,此乃JFTC於斟酌所得之各方意見後,所為之修正。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 日本公平交易委員會就反托拉斯法下之智慧財產權之利用指南為部分修正, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7169&no=64&tp=1 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
國防訓儲制將有重大變革,研發納入替代役

  行政院跨部會會議審查通過替代役條例修正草案,將研發役納入替代役,取代現行的國防訓儲制,惟研發替代役規劃內容並不等同於現行國防訓儲制,例如:國防訓儲限制預官申請,但研發替代役並未限制,此將使海外人才、海外小留學生等符合科技研發資格的碩博士,均可申請回台進入科技廠商服研發替代役。   此外,國防訓儲制在入伍短暫基礎訓練後,就如同後備軍人進入民間科高科技企業領一般工程師高薪,並享有分紅、配股,被外界抨擊為不公,未來研發替代役將改革這項缺點。將來申請服研發替代役者,在一年多的法定義務役期過後,超過的服役期限替代役男始可領取一般工程師薪水。   研發替代役役期除一年四個月法定義務役外,最長可申請延長三年,但期限要報院核定,具有彈性。至於科技大廠最關心的員額數量,仍將依內政部替代亦審議委員會審查各需用機關替代議員額需求要點第3點進行審查並視兵源調度,然員額可望逐年提升。   內政部並將進一步訂定研發替代役申請辦法,使海外人才可透過網路申請,預料研發替代役將可吸引海外學人歸國貢獻研發,對提升產業競力將有助益。替代役修正修正草案送行政院院會通過後,將送交立院審議,行政院表示會積極爭取法案在本會期過關,最快九十六年可實施。

日本發布創新治理報告書,主張強化企業等對法規範形成的實質參與

  日本經濟產業省於2020年7月13日發布「創新治理:實現Society5.0的法規與結構設計(GOVERNANCE INNOVATION: Society5.0の実現に向けた法とアーキテクチャのリ・デザイン)」報告書。其作成背景係依據日本在去(2019)年G20峰會時,基於大阪框架(大阪トラック、Osaka Track)下的「可資信任的資料自由流通機制(Data Free Flow with Trust(DFFT))願景,所提出的創新治理目標。該目標指出,過往的治理模式主要依靠法律規範,但明顯已追趕不及數位化與創新的快速步伐,致生新型態風險無法獲得有效控管、法律可能阻礙創新等問題,因而有必要革新治理模式,以掃除創新活動的障礙。基此,就上述創新治理模式的必要性與方式,日本召集國內外法律、經濟、科技、經濟等各界專家徵求意見進行討論,彙整後作成本報告書。   本報告書主張,應擺脫法規範的設計、法遵與執行,均由國家主導的傳統模式,建立提高企業參與規範擬定與實施程度的治理型態。具體主要包含以下作法: (1)法規範制定層面:規範之制定方向,改以作成價值決定的目的導向為主。至於細節性的行為義務,包含企業如何在數位化的虛擬場域內,透過程式語言等途徑落實上述法目的,則應由該些企業、以及在虛擬場域活動的社群或個人等利害關係人共同參與擬定相關的指引或標準。 (2)法遵層面:如上(1)所述,未來法規範制定將轉為形塑價值與目的為主,不會明確訂定企業的行為義務,而交由企業來擬訂。企業所制定之行為規範能否達成法規範目的,則須仰賴企業主動揭露其法遵方法,供外界檢視。因此,除企業應採用創新手法達成法目的、並對內落實法遵事項的說明外,應運用各種內外部查核機制來控管風險。同時,應著手研發相關技術或措施,讓利害關係人得取用企業之即時資料,以隨時確認企業所採取方法有無達成法遵,實現有效監督。 (3)執法層面:政府應以企業之行為對社會產生影響的程度,作為執法標準。若遭遇AI參與決策而衍生的事故,不應歸責於個人,而應建立獎勵機制,鼓勵企業積極協助究明事故原因。另一方面,亦應推動訴訟與訴訟外紛爭解決機制的線上化(Online Dispute Resolution, ODR),例如共享經濟平台服務的認證機制與標準、就電商平台上發生的小額消費糾紛由平台透過公告罰則等方式抑止與處理糾紛。

美伊利諾最高法院判決:醫療服務提供者例外不受生物資訊隱私法保護

美國伊利諾州伊利諾最高法院(Illinois Supreme Court)於2023年11月30日對Mosby v. The Ingalls Memorial Hospital et al.案做出判決:認定符合聯邦法規健康保險流通與責任法(Health Insurance Portability and Accountability Act, HIPAA)規定,基於「治療、付款或健康照護運作」之前提下,除病患外即使是醫療服務提供者的生物識別資訊被蒐集、利用或揭露,同樣不受伊利諾州生物資訊隱私法(Biometric Information Privacy Act, BIPA)的保護。 伊利諾州現行以BIPA對蒐集或保留任何個人的生物識別資訊(如虹膜、聲紋、指紋或生物樣本等)做了較為嚴格的限制,原則上這些資訊不能在未經當事人同意的情況下被蒐集、利用或揭露。除非是1.由醫療保健機構從患者身上蒐集的生物識別資訊;或2.根據HIPAA規定,基於進行治療、付款或健康照護運作的前提來蒐集、使用或儲存的生物識別資訊,才可例外免經當事人同意(biometric identifiers do not include information captured from a patient in a health care setting or information collected, used, or stored for health care treatment, payment, or operations under the federal HIPAA.)。然而,基於進行治療、付款或健康照護運作的前提,資料主體除接受治療或健康照護的病患外,是否涵蓋醫療服務提供者(如醫護人員),則有疑義。 本案因醫院的護理人員認為醫療院所未經同意,使用帶有指紋掃描功能的藥品櫃,來蒐集、使用或儲存了他們的生物識別資訊,因此提起訴訟。伊利諾州的地方法院和巡迴上訴法院於本案均支持原告提出的主張。然而,伊利諾州最高法院審理時則透過文義解釋以及條文結構分析之方式,認為立法者係有意於例外規定中重複使用「資訊」一詞,兩次「資訊」之內涵應有不同。故前段的資訊係指患者的資訊,而後段的資訊來源則應包含了醫療照護提供者,方符合立法者真意。 生物識別資訊風險較高,過去被認為需要取得當事人積極同意授權;於本案中伊利諾州最高法院權衡認為基於「治療、付款或健康照護運作」情境下,如本案情形係用來確保醫藥品被正確分配給需要的患者,因此對患者以外的醫療人員隱私權做出限制符合例外規定。本案揭示了個資隱私得為合理利用的情境之一,然而HIPAA對於資料傳輸較寬鬆的規範會否又與資料保護的趨勢有所違背,仍須持續關注相關案例發展。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

TOP