日本公平交易委員會就反托拉斯法下之智慧財產權之利用指南為部分修正

  於2016年1月21日,日本公平交易委員會(Japan Fair Trade Commission,下稱JFTC)公布了修正後的「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」,就有關標準必要專利權利行使有無違反反托拉斯法之相關問題進一步為解釋,俾利往後企業為商業行為時之參考。以下為其修正概要:一、當標準必要專利權人同意依據FRAND原則授權時,其若再提出訴訟要求排除有意願取得授權者(willing licensee)為該標準必要專利權之利用或是拒絕授權與有意願取得授權者時,該行為會被認定違反反托拉斯法。二、基於一般商業行為所為並善意進行商業談判者,會被認定屬有意願取得授權者(willing licensee),不論其之後是否就該專利有效性為爭執,或是對該專利是否屬實質必要專利為爭執。三、阻止他公司運用該專利進行研究、發展或販賣產品會被認定為不正商業行為,不論該行為是否在商品市場上產生限制競爭或獨占之結果。

  JFTC為了釐清行使智慧財產權時所可能面臨是否違反反托拉斯法之相關問題,於西元(下同)2007年9月8日發布「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」與「標準化與專利池協定指南(Guidelines on Standardization and Patent Pool Arrangements)」。標準必要專利(SEP)之相關爭議原則需依這些指南為判定,但這些指南對於一些表面上屬於權利行使(例如:標準必要專利之權利人所提起之侵權訴訟)的行為定性所提供的解釋卻十分有限。因此JFTC決定修改專利指南,並且公布草案予各方利害關係人表示意見,此乃JFTC於斟酌所得之各方意見後,所為之修正。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 日本公平交易委員會就反托拉斯法下之智慧財產權之利用指南為部分修正, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7169&no=64&tp=1 (最後瀏覽日:2026/01/24)
引註此篇文章
你可能還會想看
英國與新加坡監管沙盒機制概述

專利連結(Patent Linkage)-藥品研發與競爭之阻力或助力? - 談藥品查驗登記程序與專利權利狀態連結之發展

對微軟每月定期公佈針對IE程式脆弱性修補程式為攻擊目標的網路攻擊正在發生-針對公佈PoC有發生大規模攻擊之虞

  雖然微軟才針對「Internet Explorer」弱點「CVE-2012-1875」剛公佈修補程式不久,但針對「CVE-2012-1875」的為攻擊目標的網路攻擊正在發生。   因為作業準則(PoC)也已經公佈,有可能會發展成大規模的網路攻擊。日本IBM的Tokyo SOC也已經確認發生針對脆弱性的惡意攻擊,並將攻擊的報告公佈在該中心的部落格上。經該中心分析現在攻擊的範圍雖然「非常限縮」,但是標的型攻擊的可能性非常的高。 也正因為作業準則(PoC)也已經公佈,也將被預測到發生大規模攻擊,微軟也呼籲儘速下載修補程式對程式弱點進行修補,避免遭到攻擊 。   微軟針對「CVE-2012-1875」的弱點在6月13日每月定期公佈的資訊安全性更新程式「MS12-037」進行修補。在6月13日公佈的時間點雖然已經確認發生惡意攻擊的資訊安全安事件,也已經透過非公開管道向微軟報告,但微軟並沒有公開確認弱點的存在。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP