可口可樂公司於2011年向內部市場協調局(Office for Harmonisation in the Internal Market, OHIM)申請註冊流線型立體瓶身商標。經OHIM審議後,於2014年3月以本項商標缺乏顯著特徵不具商品區隔性為由,予以駁回申請。為此,可口可樂向歐盟普通法院(EU General Court)提出上訴。
惟法院於日前(2016年2月)做出說明,其判決結果認為立體瓶身並不具備與市場上其他可樂瓶區隔的具體特徵,根據共同體商標條例第7(1)(b)條「若商標缺乏顯著特徵則不允許註冊」。並質疑其所做的市場調查研究,無法證明該瓶身於市場上具有明顯的商品獨特性,不能讓消費者得以一眼看出是可口可樂產品,不符合同條例第7(3)條(足以使商品或服務之相關消費者認識為指示商品或服務來源,得與他人之商品或服務相區別者)排除7(1)(b)之適用條件,基於上述理由判決可口可樂公司敗訴。
透過此案件,一定程度呈現OHIM與歐盟法院在立體商標認定上相對審慎的態度。
在歐盟有關外觀設計與商標的聲請,係依照歐盟「共同體商標條例」(Council Regulation (EC) No. 207/2009)所規範。經申請通過之歐洲共體商標(CTM)註冊,得使產品或服務於全歐盟境內28個會員國享有排他性權利。而過往以販售之商品外觀或形狀申請註冊商標是具有難度的,必須係該外觀及形狀為增加其商品本身的價值或生產技術上所必要的結果,始得有商標註冊的可能。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
具社會經濟學基礎的ZOPA在2005年一出現,即被經濟學人報和集團研究指出,其將是砍掉傳統銀行以及改觀自古以來民眾對貨幣概念的驚人創新金融服務。這種抽離中間金融機構的消費借貸平台,使得交易雙方能取得更滿足交易條件。 相較傳統的借貸,這樣較高收益的交易也同樣帶來較高的風險。不過,ZOPA透過包括信用評等分類、將同一出借款項出借給多人等方式,期使風險降到最低。不過,出借人也要特別注意相關法律議題。依據英國1974年之消費者信用貸款法案(Consumer Credit Act),任何在從事商業交易行為中出借金錢之人,且非偶而為之者,應取得公平貿易部(Office of Fair Trading/ OFT)核發之消費者信用貸款執照(Consumer Credit License),否則為觸犯刑法,會被處以刑罰或罰鍰。目前,在ZOPA可借入之金額已超過15,000英鎊,未來勢必繼續發展,且不排除跨入現有銀行業務範圍。
美國能源部展開離岸風力能源計畫由於能源價格、供給不穩定、以及環境考量等因素,使美國思考潔淨及再生能源的開發。美國能源部在2008年公布了一份報告「20% Wind Energy by 2030: Increasing Wind Energy’s Contribution to U.S. Electricity Supply」,檢視風能利用的可行性,希望在2030年達到風能發電占全國20%的需求。 美國在2010年因為金融海嘯後期的影響,對於能源的需求及價格降低,導致風能的發展減緩。而面臨一些新興的市場,例如拉丁美洲、非洲、亞洲陸續加入風能的開發領域,尤其中國大陸,自2005年後,幾乎每年呈倍數成長,2010年所累積的風能更超越美國,美國再度投入相關的計畫研發,在今年(2012)美國能源部宣布展開一項投入1.8億、長達六年的離岸風力能源計畫。 此計畫的第一步將於今年投入二千萬於全美四處離岸地區導入風力能源,這些風力能源計畫將能加速風力科技的重大發展,並能協助美國能源的多樣性規劃、提升經濟發展。離岸風力是美國相當具有潛力的能源,估計可以提供超過4000GW的能量,可以緩和美國的能源危機及經濟和環境的挑戰,而且能夠提供大部分人民居住的沿海城市的能源和電力。 此一計畫之申請者,希望是能在能源開發、設備提供、研究機構、海洋裝置專家等領域組成世界級的團隊。其目的是為了促進美國離岸風力的發展,並協助下一代風力能源科技的設計與示範。這個試驗計畫能協助瞭解導入離岸渦輪機、連接渦輪機與電網的主要挑戰。投入這個新興的產業,政府的補助可協助降低成本並加速美國沿海風力能源科技的發展,而且在實際的沿海環境測試能提供有價值的資訊。 在積極發展風能的同時,美國參議院於2012年3月,否決了風能業者延長租稅優惠的提案,此租稅優惠方案將於年底屆至。此優惠是針對風能發電製造成本的補貼,相關業者紛紛表示,終止此補貼將會影響美國風能的發展,因此他們將會繼續爭取。
歐盟執委會提出《用電資料相互操作性要求及程序實施規則草案》促進電力服務相互操作性歐盟執委會(European Commission)於2022年7月29日提出《近用電錶及用電資料之相互操作性要求及非歧視性與透明性程序實施規則草案》(Commission Implementing Regulation (EU) on interoperability requirements and non-discriminatory and transparent procedures for access to metering and consumption data),於2022年9月5日草案第二階段之公眾意見徵集結束。本草案以進一步落實《內部電力市場指令》(Directive (EU) 2019/944)中賦予用戶近用有關用電及包括行政手續費用、使用輸配電過路費等資料,促進智慧電錶系統(smart metering system)於資料模型階段及應用層面之相互操作性(interoperability),提高市場參與者資料近用與交換之標準,以及未來創新能源服務標準等目標。 為落實上述指令之要求,本草案旨在規定系統相互操作性以及資料近用的非歧視性與透明性要求,其重點如下: (1)本草案適用對象為經認證之歷史計量及用電資料、未經認證的近即時計量(non-validated near-real time metering)、用電資料形式的計量以及用電資料。 (2)確保供應商於用戶同意下能夠以透明且連續性的方式近用用戶資料(包括判讀及使用)。用戶亦得近用其於智慧電錶系統的資料。 (3)根據會員國的實踐,定義歐盟層級在商業模式層面、功能層面及資訊層面等一般性規則與程序規定的「參考模型」(reference model)。參考模型為特定服務及程序所需的基本工作程序,包括: A. 由各種角色、職責及其相互作用組成的「角色模型」,包括計量資料管理員(metered data administrator)、計量站管理員(metering point administrator)、資料近用提供者及權限管理員的角色和職責; B. 由資訊對象、屬性以及該對象間關係組成的「資訊模型」; C. 詳細說明程序步驟的「程序模型」。 (4)為有效確保資料近用程序的透明度,有必要收集會員國提供的國家實踐報告,並報告至歐盟層級,同時協助會員國報告其國家實踐。 (5)適用本草案之個人資料需遵守《歐盟一般資料保護規則》(GDPR);由於智慧電錶符合終端設備的要求,也適用《電子通訊個人資料處理暨隱私權保護指令》(Directive 2002/58/EC)。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)