日本政府對於「小型無人機進階安全確保制度」進行研議,並研提「航空法」修正建議

  日本政府於2016年1月5日成立「小型無人機進階安全確保制度設計相關小組委員會」(小型無人機の更なる安全確保のための制度設計に関する分科会),聚焦無人機飛安方面之實務議題。會議由内閣官房内閣参事官擔任議長,並由國土交通省航空局協助辦理,民間參與者則多為相關產業公協會,目前規劃每兩個月開1-2次會議,其運行方式包括:原則上為非公開會議,其會議資料將於會後公開,但若議長認有必要,則得決定一部或全部不公開;此外,對於委員會成員以外的民間企業及專家學者之意見,亦應聽取。

  為更進一步確保小型無人機於飛行時之安全性,本次會議對「航空法」提出如下修正建議:
(1)除「航空法」第一百三十二條之二所規範之飛行方式及禁飛區域外,尚有其他相關飛安重要事項亦應注意,例如:機體本身之缺陷、操控者失誤、不可預期的天候變化、機體重量等(一定重量以上之無人機,對於機體性能及操控者技術應有更高要求,未來可思考訂定罰則或提供擔保)。
(2)對於機場周邊應有比現行法更嚴格之規範,除因此處操控無人機容易誤入禁區外,該範圍以內通常是飛安事故搜救區,恐妨害搜救之進行。
(3)關於禁區內飛行許可之審查,應包含:機體機能與性能、操控者知識、技術與經歷。
(4)對於商業、營業用無人機,應有更高的安全性要求。但何謂商業、營業用之定義及更高安全性究何所指須有更明確的標準!

相關連結
※ 日本政府對於「小型無人機進階安全確保制度」進行研議,並研提「航空法」修正建議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7221&no=64&tp=1 (最後瀏覽日:2026/02/08)
引註此篇文章
你可能還會想看
歐盟啟用半導體供應鏈示警系統,監測各成員國半導體供應鏈狀況

歐盟執委會(European Commission, EC)於2023年5月10日宣布啟用《歐盟晶片法案》(EU Chips Act)三支柱之一的半導體供應鏈示警系統(Semiconductor Alert System),其目的在於監測半導體供應鏈短缺之問題。 根據《歐盟晶片法案》,歐盟各成員國的半導體供應鏈主管機關須定期執行半導體供應鏈的觀測任務,以隨時確認半導體供應鏈之狀況。然而,由於歐盟係由眾多不同的國家所組成,各成員國間訊息的流通相比於其他單一國家可能較為緩慢,故EC決定創建半導體供應鏈示警系統,交換半導體供應鏈資訊以解決上述問題。在此系統中,私人企業得單獨對所處產業中的早期半導體短缺進行回報,惟個別產業常常單獨誇大或高估危機的發生可能性,對此,EC成立了歐盟半導體專家小組(European Semiconductor Expert Group, ESEG),協助收集各半導體產業與成員國所回報之訊息,除將其用於建立風險評估外,亦彙整並分析成有價值的資訊後再分享給各成員國。 若資訊收集完成後,ESEG或EC察覺歐盟確實有發生半導體供應鏈崩潰的危險,EC將召開特別委員會會議(extraordinary board meeting),共同尋求解決方案,包含聯合政府採購(joint procurement),或與第三國進行合作,以合力解決半導體供應鏈之危機。

歐盟提出智慧醫院防禦網路攻擊建議

  歐盟網路與資訊安全局於2016年11月(ENISA)提出醫院導入智慧聯網技術因應資訊安全之研究建議,此研究說明智慧醫院之ICT應用乃以風險評估為基礎,聚焦於相關威脅與弱點、分析網路攻擊情節,同時建立使用準則供醫院遵守。由於遠端病患照護之需求,將使醫院轉型,運用智慧解決機制之際,仍須考量安全防護問題,且醫院可能成為下一階段網路攻擊之目標,醫院導入智慧聯元件的同時,將增加攻擊媒介使醫院面對網路攻擊更加脆弱,因此,報告建議如下: 1.醫療照護機構應提供特定資訊安全防護,要求智慧聯網元件符合最佳安全措施。 2.智慧醫院應確認醫院內之物件及其如何進行網路連結,並根據所得資料採取相應措施。 3.設備製造商應將安全防護納入現有資安系統,並在設計系統與服務之初邀請健康照護機構參與。   在我國部分,2016年9月行政院生技產業策略諮議委員會議中即提到,強調將建立智慧健康生活創新服務模式,提供民眾必要健康資訊及更友善支持環境,同時結合ICT與精密機械及材料,發展智慧健康服務的模式。2016年11月,行政院推動「生醫產業創新推動方案」,藉由調適法規等方式統整醫療體系與運用ICT技術及異業整合,其中在智慧聯網應用下之資訊安全防護議題實屬重要。

美國CAFC透過Abbvie, Inc. v. Kennedy Inst.案確認顯而易見重複專利制度

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP