日本政府於2016年1月5日成立「小型無人機進階安全確保制度設計相關小組委員會」(小型無人機の更なる安全確保のための制度設計に関する分科会),聚焦無人機飛安方面之實務議題。會議由内閣官房内閣参事官擔任議長,並由國土交通省航空局協助辦理,民間參與者則多為相關產業公協會,目前規劃每兩個月開1-2次會議,其運行方式包括:原則上為非公開會議,其會議資料將於會後公開,但若議長認有必要,則得決定一部或全部不公開;此外,對於委員會成員以外的民間企業及專家學者之意見,亦應聽取。
為更進一步確保小型無人機於飛行時之安全性,本次會議對「航空法」提出如下修正建議:
(1)除「航空法」第一百三十二條之二所規範之飛行方式及禁飛區域外,尚有其他相關飛安重要事項亦應注意,例如:機體本身之缺陷、操控者失誤、不可預期的天候變化、機體重量等(一定重量以上之無人機,對於機體性能及操控者技術應有更高要求,未來可思考訂定罰則或提供擔保)。
(2)對於機場周邊應有比現行法更嚴格之規範,除因此處操控無人機容易誤入禁區外,該範圍以內通常是飛安事故搜救區,恐妨害搜救之進行。
(3)關於禁區內飛行許可之審查,應包含:機體機能與性能、操控者知識、技術與經歷。
(4)對於商業、營業用無人機,應有更高的安全性要求。但何謂商業、營業用之定義及更高安全性究何所指須有更明確的標準!
加密貨幣經濟襲捲全球,國際貨幣組織(IMF)總裁Christine Lagarde於官方網站發表對加密貨幣經濟可能涉及之風險及未來各界應如何共同應對之看法;認為加密貨幣有無限發展之潛力,其所應用之技術不僅提升金融產業發展,更為其他領域注入創新技術,惟發展之同時,潛在不法風險逐漸浮上檯面,加密貨幣不受中央銀行監管,並因其匿名性而容易成為洗錢、資恐的全新金融犯罪工具;另外,全球加密貨幣交易活動越發頻繁,交易價格的極端波動性,以及與傳統金融體系之間的關聯不明確,皆可能危害全球金融之穩定性。 Christine Lagarde認為加密貨幣交易之監管,與監管傳統金融所制定之政策並無二致,皆應以「確保金融穩定性和保護消費者」為首要政策,因此,提出幾個應對方向: 將加密貨幣創新技術用於監管行為技術中 (1)分散式帳本技術 (DLT) 為加快市場參與者與監管機構之間的訊息共享,確保用戶交易安全,可將此技術用來建立註冊標準,驗證客戶資訊及數位簽章;各政府機關亦可利用此技術所獲得之相關數據減少逃漏稅現象。 (2)生物辨識、人工智慧與加密技術 將生物辨識、人工智慧與加密等技術來強化數位安全,及時辨識可疑交易行為,有效抑止非法交易。 全球應共同發展出監管框架,跨國合作打擊不法 有鑑於加密貨幣的流通是全球性的,全球應共同發展出監管框架,2018年G20高峰會中加密貨幣也納入討論議題,藉由凝聚國際間共識,避免創新科技淪為犯罪工具。 面對加密貨幣價格的波動性,各界有不同解讀,有認為這只是一時狂熱所造成,終將泡沫化;亦有認為就如同物聯網發展初期革命一般,加密貨幣將破壞整個金融體系,取代現有的法定貨幣;惟Christine Lagarde表示事實應該是介於這兩個極端想法之間,各界不應片面否定加密貨幣,應採包容之看法迎接這項新科技,更應正視其潛在之危險。 國內現已有多家虛擬貨幣交易平台實際運營,為保護消費者權益,避免國內虛擬交易平台淪為洗錢、資恐行動之犯罪溫床,日前法務部已邀集金管會、內政部、央行、警政署、調查局等單位進行跨部會協商,擬於收集各界意見後,修訂相關規範,以利我國對於虛擬貨幣監管之政策方向與範圍能符合各方期待。
歐盟2014個人資料保護日,倡議資料可攜權及個資規範革新歐盟將2014年1月28日定為「2014個人資料保護日」(Data Protection Day 2014),倡議推動個人資料修法及規範革新,主要係位因應數位化時代,個人資料權利保護越形重要,並且為了強化保護線上隱私權利,歐盟執委會首於2012年1月25日所提出個人資料保護指令的修正草案─「保護個人關於個人資料處理及此等資料自由流通規章(一般資料保護規章)」(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL(General Data Protection Regulation));該修正草案於2013年6月進入歐洲議會、理事會及執委會的三方協商,同年10月21日歐洲議會公民、司法與內政委員會(Committee on Civil Liberties, Justice and Home Affairs)審議通過,若進程順利預計將於2014年獲得通過,並於2016年生效施行。 歐盟「2014個人資料保護日」會議中,特別提到此次修法,係為歐盟跨時代的個人資料保護規範革新工作,具有特別重要意義,並且倡議應對於資料可攜權(Right to Data Portability),明文法制化加以落實保障,包括加強資料當事人控制及近取個人資料的權利,資料當事人更容易近取(aceess)個人資料(第14、15條);資料當事人有資料可攜的權利(第18條),當資料處理是以電子化方法,且使用結構性、通用的格式時,資料當事人有權利可以取得該結構性、通用格式下的個人資料(第18條(1)),且更容易自不同服務提供者間移轉個人資料。 國際間對於「資料可攜」議題,正反意見均陳,並未達成共識。歐盟執委會提出個人資料保護指令的修正草案第18條,倡議將「資料可攜性」明文法制化,並要求資料蒐集、處理與利用者對以電子化方法持有的個人資料,需使用結構性、通用的格式,以便利並確保後續個人資料可攜性。此修正草案一提出,隨即引發國際間各重要國家的熱烈探討:有反對者認為,此舉無異將形成未來國際間貿易障礙;有贊成者從確保使用者權益觀點,認為未來智慧聯網(IoT)環境下,資料可攜性是不可避免的趨勢,賦予資料當事人法律權利,有助於個人資料的保護。各重要國家對歐盟修正草案立場及意見,值得加以探究,以觀察未來法制發展趨勢。
自駕車之發展與挑戰-以德國法制為借鑑 通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)