聯邦巡迴上訴法院確認同為蘋果供應商的玉晶光並未侵害大立光的專利權

  2013年6月4日大立光在北加州聯邦地方法院起訴玉晶光,主張玉晶光生產的八款透鏡侵害其五件美國專利。就部分的產品玉晶光請求法院裁判無引誘侵權,北加州聯邦地方法院部分准許了玉晶光的請求,之後大立光就無引誘侵權部分上訴聯邦巡迴法院敗訴。

  大立光未能主張直接侵權,因為玉晶光絕大部分的透鏡是銷售給蘋果在亞洲的供應鏈中的鏡頭模組廠,鏡頭模組廠再販售給亞洲的系統組裝廠,最後由系統組裝廠整機出售給蘋果,再由蘋果販賣給美國的消費者。這個過程中玉晶光並非唯一的透鏡供應商,大立光也是供應商之一甚至供應量大於玉晶光。

  法院贊同並認為引誘侵權是行為人(本案中為蘋果)被引誘而有直接侵權的證據,但大立光在本案中無法證明玉晶光有引誘侵權責任,因玉晶光沒有在美國有直接製造、使用、銷售、許諾銷售或進口的行為,故不構成直接侵權,而玉晶光在本案中並不爭執侵害大立光的專利權,但主張並非是引誘侵權人。

  大立光另提出的主張是蘋果的供應鏈是「隨機選擇」大立光或玉晶光的透鏡,因此推論蘋果在美國的產品採用玉晶光的比例,等於蘋果在全世界的產品採用玉晶光的比例,進而認定蘋果在美國有直接侵權。唯聯邦巡迴上訴法院認為大立光關於「隨機選擇」這個主張,沒有提出來自供應鏈的相關證據,所以沒辦法證明蘋果在美國的產品有使用玉晶光的透鏡。大立光可再上訴美國最高法院。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
※ 聯邦巡迴上訴法院確認同為蘋果供應商的玉晶光並未侵害大立光的專利權, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7251&no=64&tp=1 (最後瀏覽日:2025/11/02)
引註此篇文章
你可能還會想看
美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫

  近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。   此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。   時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

美國總統簽署《安全可信通訊網路法》

  美國總統於2020年3月12日簽署《安全可信通訊網路法》(Secure and Trusted Communications Networks Act),以保護國內的通訊網路以及5G技術之安全。本次立法之目的,主要圍繞三個面向,包括:安全及可靠的網路(Reliable and safe networks)、保護重要利益(Protecting vital interests)以及確保美國未來的安全(Securing America’s future)。   由於國家安全取決於高速與可靠的通訊網路,若使用由無法信賴之供應商建置的電信設施,將威脅到國內網路安全。因此,本法要求聯邦通訊委員會(Federal Communications Commission)應於本法施行一年內於其網站內公布造成國家安全威脅之法人名單,並禁止由名單上之法人建置美國國內關鍵之電信設施。另外,本法亦禁止使用聯邦經費向造成國家安全威脅之法人購買或租借電信設備,並以安全可信之通訊網路補償計畫(Secure and Trusted Communications Networks Reimbursement Program)作為因拆除與更換既有造成國家安全威脅之電信設備之補償機制,聯邦通訊委員會亦將與先進通訊服務供應者(provider of Advanced Communication service)合作,協助該補償計畫之進行。

全球創新指數(GII)評估COVID-19對於全球創新的影響

  全球創新指數(Global Innovation Index,簡稱GII)為世界智慧財產權組織(WIPO)與歐洲工商管理學院(INSEAD)等單位,共同衡量全球經濟創新績效之參考指標,於今年(2020)9月2日所發佈的全球創新指數顯示,COVID-19嚴重的阻礙全球創新的發展,但卻也對於特定領域(如醫療衛生)帶來新的創新契機。   今年與2009年(全球經濟危機時)相比,世界金融體系運作仍保持平穩,但用於資助創新型企業的資金,由於全球投資者對於疫情影響新創企業營利表現擔憂,資金的投入也連帶受到影響。而在創新融資方面,鎖定新創早期階段投資的創投公司為確保日後競爭力,轉向對當今熱門標的(如生命科學等)等進行投資,若屬於研發密集型新創企業(研發時間較長)及非投資熱點(區域)的企業,投資方面則所受疫情衝擊較大。   觀察全球主要國家,雖然皆制訂相關補助計劃用以緩解因疫情所帶來之衝擊,例如中短期欲透過貸款擔保爲企業提供支持。然而,這些補助措施並非直接爲創新和新創企業提供資金。儘管如此,專家對於全球科學和創新受COVID-19的影響也非全然悲觀,部分源自於全球對於資本回報的期待,也預估未來風險投資及創新也將轉向醫療衛生、遠距教學、大數據、電子商務、機器人等領域。

TOP