歐盟在2015年9月11日至2015年12月7日期間進行電子通訊網路及服務法規架構檢視公共諮詢,檢討目前電子通訊法規發展方向。2016年3月3日歐盟提出摘要報告,諮詢主題可分為五項,分別為:網路接取規範、頻譜管理與無線連結、電信服務產業管制、普及服務規範、以及機構設立與監理等。在此次公共諮詢當中,可歸納出幾項發展趨勢,包括:
一、基於消費者或市場需求,網路已成為促進數位社會、經濟發展之主要方式。
二、網路連線品質待改善。多數認為應支持基礎建設來因應未來廣泛的需求。
三、多數認為目前法規架構無法促進內部市場發展,未來應朝向電信市場自由化方向進行,特別是基於使用者利益以及市場競爭考量。
四、頻譜管理部分,無線寬頻網路固然重要,但未來仍應朝向促進新行動通訊技術發展,如5G技術等。
五、未來對於頻譜的規劃與應用應更具彈性,且進行技術領域調和。
六、許多會員國因應科技技術的進步更新電信法規,透過促進下世代基礎建設投資以及其他方式,未來希望能使電信法規更具有彈性與簡化。
七、未來將著重考量長期投資研發帶來的效益。
八、消費者希望未來能重視服務競爭,而非僅強調基礎建設。且針對基礎建設本身,亦應重視基礎建設投資的成本分擔。
九、重新思考普及服務,亦即給予會員國更多的彈性來決定如何進行資金補助與履行服務。
十、消費者組織立場認為需要進行產業管制,以及設定使用者保護規範,而基於電信事業立場,特別是在服務部分,則需要整合性規範。部分也認為電信法規亦適用於相同性質之服務,例如OTT。
十一、多數認為,歐盟層級的管制機構應該重新檢視,以協助未來法規的修正。
英國國際貿易部(Department for International Trade, DIT)於2021年3月22日發布《出口軍用與軍民兩用技術定義與範圍之指南》(Exporting military or dual-use technology Guidance: definitions and scope),以協助使用者定義「技術」與「轉讓軍用或軍民兩用技術的法規範圍」。指南中說明,出口管制目的旨在防止出口技術及技轉可能導致開發或製造武器而危及國家安全,而非禁止合法貿易或知識傳播。任何管制技術的永久或暫時性出口或技轉(Technology transfer)均應取得出口許可證,包括展演、海外招標或投標、履約等行為。 首先在適用主體上,指南說明適用出口管制規範,為所有在英國國境內之人(不論國籍)和組織以及特定情況下的海外英國人,向外國人或海外地區為出口、技轉、或是使海外人員取得受管制技術之情況。 指南中所謂技術者,包含《英國戰略出口管制清單》(UK Strategic Export Control Lists)、《2008年出口管制命令》(The Export Control Order 2008)與歐盟理事會第428/2009號規則(Council Regulation No 428/2009)之內容。有些管制技術會以不同形式呈現,例如藍圖、計畫、模型、程式、指導手冊等,其呈現的形式亦屬管制範圍。此外,部分技術若與大規模破壞武器(Weapon of Mass Destruction, WMD)、武器貿易禁令(arms embargoes)以及未經授權的軍事出口有關者,亦可能屬於受管制之技術,因此定義上十分廣泛。因應科技和網路發展,出口和技轉亦會以不同方式呈現。指南中說明,技轉包含(1)以有形的物理文件或存載於媒體的方式技轉,例如隨身碟、硬碟、筆電或平板等;(2)以電子式等無形形式技轉,例如電子郵件傳送等。無論受管制技術之技轉是否加密,均需取得出口許可證。 針對前述定義之出口和技轉方式,指南中也例示技術移轉或出口的不同態樣,例如(1)電話會議及視訊會議;(2)電子郵件;(3)筆電、手機等可記憶之設備;(4)跨國公司內部傳送;(5)雲端儲存;(6)在國外下載使用管制技術;(7)員工在海外使用/存取內部網路;(8)第三方在海外使用/存取公司內部網路或雲端服務;(9)IT系統維護與測試。以上方式均應個別判斷是否需要申請出口許可證。此外,技術所有者應主導出口管制規範之法遵,故應了解客戶、供應商、分包商等第三方服務業者之詳細資訊,且於契約中明訂各方的出口管制責任及相關條款,並隨時確認接受者或第三方是否得自不同管道取得管制技術及相關訊息,並於可能出口和或技轉管制技術時,立即申請出口許可證。
美國發起「投資報酬計畫」(Return on Investment Initiative, ROI)全面檢視科研成果商業化法制川普總統在2018年4月發布「總統管理議程」(President’s Management Agenda)將國家科研成果商業化之發展視為「聯邦跨機關優先目標」(Cross-Agency Priority Goal, CAP Goal)。為維持美國全球科技創新領先地位,美國政府每年投資約1500億美元於各聯邦所屬大學與研究機構進行科技研究。美國國家標準與技術中心(NIST)與白宮科技政策辦公室(OSTP)聯合發起「投資報酬計畫」(Return on Investment Initiative, ROI),宗旨為釋放美國創新(Unleashing American Innovation),讓政府投資預算發揮科研補助之最大效益。 計畫目的包括:1.評估現行政府從事技術移轉指導原則,檢視應予以維持與待改革之處;2.吸引後期研發、商業化與先進製程的技轉投資,並降低法規阻礙;3.支持科研創新產官學合作模式與技轉機制;4.有效移除技轉阻礙以利加速技轉成效,並聚焦於國家重要產業發展的新興措施;5.評估聯邦政府資金運用指標成效;6.創造激勵學研機構提升技轉成效之誘因。 NIST調查指出,阻礙技轉發展之原因包括:1.技轉與智慧財產權協商所涉高額交易與時間成本;2.不同政府單位對法規之解釋、適用與實踐意見相歧;3.智慧財產權保護不足、技術授權使用限制與政府行使介入權(march-in rights)限制;4.公務員參與科技新創與衍生企業(spin-off)限制與利益衝突規範。此ROI計畫已於2018年7月30日完成各方意見徵詢,總計共104份。預計於2019年年初,做出完整分析報告與法制建議。
日本總務省公布AI運用原則草案日本總務省於2016年10月起召開AI聯網社會推進會議(AIネットワーク社会推進会議),該會議於2018年7月17日公布「報告書2018─邁向促進AI運用及AI聯網化健全發展」(報告書2018-AIの利活用の促進及びAIネットワーク化の健全な進展に向けて-),提出「AI應用原則草案」(AI利活用原則案)。 「AI應用原則草案」制定目的在於促進AI開發及運用,藉由AI聯網環境健全發展,實現以人為中心之「智連社會」(Wisdom Network Society:WINS),其規範主體包括︰AI系統利用者、AI服務提供者、最終利用者(以利用AI系統和服務為業)、AI網路服務提供者、離線AI服務提供者、商業利用者、消費者利用者、間接利用者、資料提供者、第三者和開發者;草案內並根據上開規範對象間關係,整理各種AI運用情境,最終提出「適當利用」、「適當學習」、「合作」、「安全」、「資安」、「隱私」、「尊嚴自律」、「公平性」、「透明性」、「歸責」等十大AI應用原則。總務省表示將持續檢討完善AI應用原則草案細節,以「利用手冊」等形式公布,提供民眾參考。 行政院於2018年初推出「台灣AI行動計畫」,將整合5+2創新產業方案,由相關部會協助發展100個以上的AI應用解決方案,日本總務省所整理之AI應用情境與研提之應用原則,或可作為我國未來推動AI發展之參考。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。