美國最高法院在2016年2月9日,以暫時處分裁定美國環保署在「清潔電力計畫」(Clean Power Plan)下所擬訂的「對固定污染源的碳排指引:電業發電單位」( Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units ),在北新(Basin)電力公司等對其所提起訴訟期間,暫緩實施。
所謂環保署「清潔電力計畫」(Clean Power Plan),係為因應氣候變遷,在2015年8月由美國總統在演說中公布,並於同年10月由美國環署公布「對固定污染源的碳排指引:電業發電單位」最終內容。該計畫的具體目標乃以2005為標準,在2030減少碳排32%,各州並得自行訂訂計畫;預期的計畫效果則包含:保護一般的美國家庭、促進經濟,與協助一般美國家庭節省費用。
由於該案涉及大規模以天然氣、風力與太陽能取代燃煤電廠,2015年的10月23日至11月5日間,由北新與其他近60家電業向聯邦哥倫比亞特區上訴法院(United States Court of Appeals for the District of Columbia Circuit)提出申請暫緩實施之聲請。2016年1月21日 該上訴法院駁回聲請,同月26日原本提出聲請的電業再向最高法院提出暫緩實施之聲請。
在向最高法院的聲請中,業者主張:因系爭指引所規範排放限制量為任何現行發電業者(Electricity Generating Units, EGUs)無法透過現行科技或流程改善單獨達成,將迫使整個電力產業作出轉變。業者並指出,由於淘汰既有電廠與建立新的再生能源計畫皆須長時間的努力來執行,若欲在2022年達成相關目標,電業必須現在就展開行動。
而最高法院也認同業者的主張,指出:因訴訟曠日廢時,若不暫緩實施系爭指引,立即、無法回復、且特別重大的損害將持續發生;且美環署仍將取得該計畫所欲取得之效果,縱使系爭指引最終被廢止。
基於上述理由,最高法院以暫時處分裁定系爭措施暫緩實施。
韓國中小企業暨新創事業部(Ministry of SMEs and Startups)於2021年8月30日發布「使韓國躋身全球四大新創強國之新創支持措施」(Venture Complementary Measures for Korea to Become One of the Top 4 Global Venture Powerhouses)。韓國總統文在寅指出,第二波創業爆發期為立基於西元2000年的第一波創業爆發期之上,如今韓國企業數量較當時已增加四倍,創投投資額更突破4兆韓元,顯示韓國新創的蓬勃發展潛力。為了能在政策面有效支持韓國新創能在第二波創業爆發期(Second Venture Boom)獲得所需的人才與資金,韓國中小企業暨新創事業部規劃三大面向、十二項任務作為推動韓國躋身全球四大新創強國之新創支持措施: 在打造韓國新創國際競爭力面向,推動股票選擇權改革、全面修正《促進新創事業發展特別措施法》並廢除落日條款、提高由政府對高科技新創公司貸款提供擔保的技術擔保(technology guarantee)額度上限至200億韓元、安排國際創投媒合價值1兆韓元的全球創投資金,以及配合全球關注ESG趨勢,以碳價值(carbon value)評估為基礎,提供價值5000億韓元的氣候應對保證(climate response surety)。 在擴大創業投資市場面向,包含創造私人基金投資的誘因及允許對特定智慧財產權進行投資、進行矽谷式的(Silicon Valley-type)創投基金監管、為早期新創公司引進一兆韓元的創投資金,以及提供創業加速器租稅減免等措施。而在多元化新創出場措施面向,則規劃新增技術創新併購擔保以及增加新創併購基金、給予更多併購租稅優惠,以及提供價值1000億韓元的出場基金等。 韓國中小企業暨新創事業部指出,在第一波創業爆發期中,韓國新創打下了良好基礎,為了把握第二波創業爆發期的發展機會,韓國政府將加強與民間合作,以發展新創來創造就業機會並作為國家發展動能。為了達成躋身全球四大新創強國的目標,中小企業暨新創事業部將全力協助人才與資金的募集,從而完善韓國的新創生態系資源。
美國聯邦通訊委員會發布公告重申自動簡訊發送適用電話消費者保護法聯邦通訊委員會(Federal Communication Commission, FCC)於2016年11月18日發布一項標題為Robotext Consumer Protection的執法諮詢文件。該文件就自動發送簡訊(Autodialed text messages,又稱robotexts)於電話消費者保護法(Telephone Consumer Protection Act of 1991, TCPA )內的適用予以釐清。 在該執法諮詢文件內,解釋TCPA法條中對於自動撥號系統定義為任何可以儲存或是產出號碼並自動撥打的設備。該法對於自動撥號系統之限制,包含通話(call)、預錄語音(prerecorded calls)及簡訊(texts),除非已取得接收方的明示同意(prior express consent),或符合下列狀況之一,方得以自動撥號系統為之: (1) 基於緊急狀況, (2) 在依循消費者隱私保護的情況下,對終端使用者為免費且獲得FCC的豁免, (3) 單純為回收對聯邦所負擔的債務、或其所保證的債務。 值得注意的是,聯邦通訊委員會針對當下網路科技發展出的訊息傳送模式做出解釋,簡訊apps、以及任何符合TCPA自動撥號定義的「網路至電話之簡訊傳送」(Internet-to-phone text messaging)等兩種情況亦納入TCPA的適用。因此,發送方主張對方已為事前同意者,應負擔舉證責任,並使消費者透過合理方式隨時取消其同意;於其主張不想再收到任何自動發送簡訊後,該發送方應立即發送一封簡訊以確認接收者的「選擇退出」要求(opt-out request)。 再者,對於已移轉的門號進行自動簡訊之發送,不論發送方是否有認知該門號換人持有,在未經該門號持有人同意的情況下,發送方至多只能對該號碼自動發送一封簡訊;如之後再度自動發送簡訊,即判定違反TCPA規範。 FCC此份文件雖從保護消費者的立場出發,但所設條件明顯苛刻,因此引發諸多爭議。此外引人注意的是,此文件發布前的一個月,ACA International v. FCC一案才於10月19日結束言詞答辯,該案爭點主要為FCC是否不當擴張適用TCPA,此案後續可用以追蹤該案聯邦法院是否肯認FCC對於TCPA的適用觀點。
英國資訊委員辦公室(ICO)發布沙盒執行過程中所觀察到的關鍵議題2019年9月英國資訊委員辦公室(Information Commissioner's Office, ICO)啟動沙盒計畫(ICO Sandbox)測試階段(beta phase),由ICO所選10個測試專案,透過解決當今社會問題,例如如何減少暴力犯罪、大學如何促進學生的心理健康、新技術如何改善醫療保健等,期能促進公眾利益。 各專案在滿足創新性和可行性前提下,同時也面臨著複雜的資料保護議題,因此ICO持續與各專案溝通,提供其應用現有個資保護指引之建議,如歐盟一般資料保護規則之資料保護影響評估指導文件(Guide to the GDPR - Data protection impact assessment)、資料保護自我評估工具包(Data protection self-assessment toolkit)等。自2019年3月底開始(受理申請)迄今,ICO沙盒執行過程中所觀察到的關鍵議題如下: 公部門資料應用效益:部份參與者正在克服與公部門進行歷史資料共享,或是如何整合應用大數據等。個人資料與新技術應用,必須與資料主體的權利和自由進行權衡。 同意:確保各方對於「同意」(Consent)之理解,以弭平差異,同時向公眾提供透明資訊。 新技術的挑戰:應用語音生物辨識(voice biometrics)、臉部辨識技術(facial recognition technology, FRT)等,需要在適當基礎上處理特殊類別資料。 資料分析(Data analytics):以符合資料保護的方式進行資料分析,處理特殊類別資料的適法性,評估處理過程中的風險,並檢查可能用於資料分析的資料來源,確保符合目的之應用。 未來的6個月,ICO將持續與各專案合作,使其為有效的解決方案,為公眾提供創新合規之產品與服務,並成為未來結合資料保護和創新應用之規劃藍圖,以奠定隱私保護的基石。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。