日本政府公布「日本再興戰略2016 (草案) 」,並以實現第四次工業革命為主軸

  日本首相官邸之「日本經濟再生本部」於2016年5月19日召開第27次「產業競爭力會議」,並於該會議上提出「日本再興戰略2016(草案)」進行討論。再興戰略以實現「第四次工業革命」為主軸,透過活用IoT、巨量資料、人工智慧(AI)、機器人等技術,目標在2020年創造出30兆日圓的市場附加價值。為了推動相關政策,今年夏天將會成立具備統整指揮機能之「第四次工業革命官民會議」,該會議下並設置「人工智慧技術戰略會議」、「第四次工業革命 人才育成推動會議(暫定名稱)」,以及「機器人革命實現會議」。

  「日本再興戰略2016(草案)」,特別對於製造業相關之議題提出討論。再興戰略指出,日本相較他國,雖然在網路空間的「虛擬資料(バーチャルデータ)」平台方面發展較晚,然而在健康資料、交通資料、工廠設備運轉等「即時資料(リアルデータ)」領域有潛在的優勢,因此為了讓日本的企業超越目前的框架,將以建構取得「即時資料」之平台為目標。綜整「日本再興戰略2016(草案)」具體重要政策方面如述,包括:

(1)日本政府認為,第四次工業革命普及的關鍵,在於根據中小企業的現場需求,導入IT及機器人等技術,因此將請機器人專家支援,在兩年內將技術導入1萬家以上的企業。

(2)人工智慧的研發係屬第四次工業革命的基礎技術,因此要建構提供AI軟體模組工具,以及推動標準化的完善環境,並於今年內提出研發及產業化的具體施政內容,並留意開發人工智慧的透明性、控制可能性等原則及國際動向。

(3)關於產業活用區塊鏈技術(Block chain)、整備制度促進資料流通等議題,預計於今年秋天提出對應方針。

(4)於「機器人革命倡議協議會」檢討製造業之商業模式改革、與德國共同提案國際標準化及先進案例。

(5)於2020年以前,運用傳感器蒐集資料,創造50件以上,工廠和總公司間,企業和企業間等超越組織框架的先進案例,並提出國際標準。

(6)進行智慧工廠實證,建構具備AI技術的自動化模組以及智慧的產業保全。此外,為超越既有企業間的框架,將於機器設備進行資料共有及活用的實證,並根據實證結果修正相關制度。

(7)整備促進資料利用的環境,特別著重能夠蒐集、分析的資料平台,形成健全的資料流通市場。因此,為釐清彼此的權利義務關係,今年內個人資料保護委員會將提出相關交易指針。

(8)強化智財紛爭處理系統,將徵詢產業界的意見,於今年提出法制改革的結論。

(9)強化中小企業的智財戰略以及必要審查體制,協助其申請及活用專利權,預計明年度開始擴大支援業務,負責機關為獨立行政法人工業所有權資料‧研修館(INPIT)。

相關連結
※ 日本政府公布「日本再興戰略2016 (草案) 」,並以實現第四次工業革命為主軸, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7262&no=64&tp=1 (最後瀏覽日:2026/01/09)
引註此篇文章
你可能還會想看
新加坡「智慧財產中心藍圖」(IP Hub Master Plan)

  自2013年起,新加坡綜合考量其天然資源匱乏之劣勢與位處東南亞經貿核心之優勢,提出「智慧財產中心藍圖」(IP Hub Master Plan),目標在10年內讓新加坡成為亞洲的全球智慧財產營運中心(IP Hub),藉以打造新加坡作為亞洲金融與法律中心之重要地位;「智慧財產中心藍圖」的具體規劃包含在「交易與管理」、「高值智財申請」與「爭議解決」等三大面向,成為匯聚亞洲且面向全球的智財營運中心。   在考量全球經濟成長力趨緩,世界各國紛紛加大投資創新與數位轉型的趨勢下,新加坡智財局(IPOS)於2017年再次更新這份藍圖:盤點自本藍圖提出迄今的各項執行成果,並探討如何與世界趨勢接軌。在更新版藍圖中強調未來智慧財產在具創新力公司資產內的比重將遠高於實體財產,對智財體制的依賴將與日俱增,新加坡應及早因應以提供新創產業包含智財保護、管理與最大化智財價值等協助,以打造未來產業競爭力。   更新版藍圖引用OECD「創新就是將創意帶往市場」之定義,智財產業將成為創新型經濟(innovation-driven economy)中的關鍵。根據IPOS估計,智財交易與管理活動將為新加坡在未來5年創造至少15億新幣的產值,而未來的挑戰在於提高「智財創造」的便利、「智財保護」的普及,以及「智財商業化」的推進等三大面向;因此IPOS將加強智財檢索與政府機關間合作、協助中小企業導入智財管理制度提升企業效益,並打造無形資產評價、交易與融資平台,以達成更新版藍圖所提出之挑戰目標。

英國上議院對於自動駕駛車運作環境及應備法制規範展開公眾諮詢

  英國上議院科學及科技委員會(The House of Lords, Science and Technology Committee)於2016年9月15日對於自動駕駛車(Autonomous Vehicles)的運作環境與應備法制規範展開公眾諮詢,委員會邀請利害相關的個人和團體提交書面文件來回應此公眾諮詢。書面意見提交的最後期限是2016年10月26日。   英國政府一向對發展自動駕駛車的潛力十分積極,其在2015年建立了一個新的聯合政策單位-聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV),並在2015年財政預算案中提供CCAV一億英鎊的智慧行動研發基金聚焦於無人駕駛車技術。CCAV還公佈現有與車輛交通相關立法的調查報告,其結論是:「英國現有的法律架構和管制框架並不構成自動駕駛車在公路上測試的阻礙。」此外,CCAV還出版了無人駕駛汽車測試的實務守則。在2016年英國女王的演講中,政府宣布將制訂現代運輸法案(Modern Transport Bill):「確保英國處在最新運輸科技的尖端,包括自動駕駛和電動車。」 2016年7月,CCAV舉辦了英國的聯網與自動駕駛車的測試生態系統的公眾諮詢,以及於2016年9月發佈個人和企業對於在英國使用自動駕駛車技術和先進輔助駕駛系統的公眾意見徵詢。   本次公眾諮詢將調查政府所採取的行動是否合適,是否有兼顧到經濟機會和潛在公共利益。在影響與效益方面,本次諮詢將收集自動駕駛車的市場規模與潛在用途、對用戶的益處與壞處、自動駕駛車對不同產業的潛在衝擊以及公眾對於自動駕駛車的態度等相關證據。在研究與開發的方面,自動駕駛車目前的示範計畫與規模是否足夠、政府是否有挹注足夠的研發資金、政府研發成果的績效以及目前研發環境是否對中小企業有利等面向,找尋傳統道路車輛是否有和自動駕駛車輛並存的過渡轉型方法。最後,布署自動駕駛車是否需要提升軟硬體基礎設施、政府是否有建立資料與網路安全的方法、是否需要進一步的修訂自動駕駛車相關法規、演算法及人工智慧是否有任何道德問題、教育體系是否能提供自動駕駛車相關技能、政府制訂策略的廣度;以及退出歐盟是否對英國研發自動駕駛車產業有不利之影響;而英國政府是否應在短期內做出保護該產業之相關措施,或是待Brexit條款協商完成之後再視情況決定等等。   上述議題在書面意見徵集完成之後,將於2016年11月召開公聽會再度徵集更廣泛的相關意見,科學及科技委員會希望能在2017年初做成調查報告並提交給國會,在得到政府回應之後,可能將進行辯論以決定未來英國自動駕駛車產業的發展方向。

美國競業禁止條款之修法趨勢及對離職員工之管理建議

  美國聯邦貿易委員會(The Federal Trade Commission, FTC)於2023年1月5日提出聯邦規則彙編(Code of Federal Regulations, CFR)之修正草案,其基於競業禁止條款(Non-Compete Clauses)將阻止員工離職及員工之競爭、降低員工的薪資、阻止新企業之形成及阻礙創新等立法目的,擬禁止僱用人及受僱人間約定競業禁止條款及使現有的競業禁止條款歸於無效。   美國亦有相關報導提到員工流動於技術領域尤為常見,因技術領域之企業對營業秘密高度重視,故對於員工離職到競爭對手會特別留意,例如加州的許多企業(尤其是位於矽谷之企業)會與員工簽署保密合約規範對於機密資訊的處理,部分合約甚至包含競業禁止條款以限制員工於離職後至競爭對手處工作,不論係保密合約或競業禁止條款,其目的均係延遲或避免員工於離職後帶走公司敏感資訊並將其用於對前僱主不利之用途。   聯邦規則之修正草案一旦通過,未來美國的企業將不得再以約定競業禁止條款之方式限制離職員工至競爭對手處工作,但企業仍可透過在員工離職前或離職後採取相關措施,盡早發現並降低離職員工竊取公司敏感資訊的風險,可採取的措施例如:   1.留意員工離職前是否有未經授權或為完成工作以外之目的複製或存取公司的資料之行為,意即,這些蒐集來的資訊是否將用於新公司的工作(如改良競爭對手的產品、擴大競爭對手的客群等);   2.對員工個人工作設備(如:公司提供之筆電及手機)或網路存取紀錄等進行調查,檢視是否有異常檔案存取紀錄或異常行為(例如是否突然大量刪除/複製檔案);   3.了解員工的離職原因及於離職後的規劃——可以了解員工未來可能從事的職業、就職的企業以調整離職前調查的程度;   4.留意員工於找到新雇主後是否仍持續使用公司的營業祕密——新雇主亦須留意的是,新進員工是否仍持續使用前公司的營業秘密,以避免公司被訴。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

英國資訊委員辦公室推出資料分析工具箱協助組織檢視資料保護情形

  英國資訊委員辦公室(Information Commissioner's Office, ICO)於今(2021)年2月17日推出資料分析工具箱(data analytics toolkit)供所有考慮對個人資料進行資料分析的組織使用,旨在幫助組織駕馭人工智慧(Artificial Intelligence, AI)系統對個人權利所可能帶來的挑戰。   ICO表示,越來越多的組織使用AI來完成特定任務,例如使用軟體自動發現資料集(data sets)的模式,並藉此進行預測(predictions)、分類(classifications)或風險評分(risk scores),組織在使用個人資料進行資料分析時,納入資料保護的概念是至關重要的,除符合法律要求外,也能增強民眾對技術的信任與信心。   使用ICO的資料分析工具箱時,首先會詢問組織所適用的法律,並引導至相對應的頁面,並透過合法性(lawfulness)、問責與治理(accountability and governance)、資料保護原則(data protection principles)以及資料主體權利(data subject rights)等一系列的問題瞭解組織的資料保護情形,在回答所有問題之後,工具箱將產生一份報告,提供組織關於資料保護的建議,提高組織資料保護的法令遵循程度。   ICO強調,組織應該要在個人資料處理的過程中考量報告中所提及的建議,並向組織的資料保護長(Data Protection Officer, DPO)徵詢其意見,在組織委託、設計與實施資料分析時落實個人權利與自由的保障。

TOP