位於歐洲東北部全國人口約僅有130萬的愛沙尼亞為了吸引更多外資與新創家前往,除了廣推網路登記公司設立、網路銀行,以及透過網路管理公司營運等改善投資環境相關措施之外,更領先全球推出網路市民證「e-Residency Card」。
隨著科技與網路的快速發展,網路市民證的推出打破了國家與地域疆界的限制,讓即使不住在愛沙尼亞的人士也可利用網路於18分鐘內完成登記設立公司流程。申請愛沙尼亞網路銀行相關服務與帳號、運營公司、進行線上簽章/簽約,甚至完成報稅等,讓外資、新創家大幅簡化公司申請設立程序與進入門檻。
此外,網路市民證也提供新創事業免除營業所得稅,吸引了眾多新創家前往該國創業,並於該項政策施行的前七個月內讓超過4,000名的新創家前往申請。同時,由於愛沙尼亞為歐盟會員國之一,因此也使外資與新創家在愛沙尼亞投資設立公司後,等同於在歐盟境內設立營運據點,成為進入歐盟市場的敲門磚。
正因為網路市民證所獲得的成功迴響,愛沙尼亞政府進而推行網路市民計畫「e-Residency Program」強化此項優惠政策,預計讓網路市民人數增加至數百萬人,活絡愛沙尼亞的經濟產業體系,進而傳播愛沙尼亞文化與知識。
德國漢堡地方法院4月20日針對GEMA控告YouTube一案作出判決(Az. 310 O 461/10),確認影片平台業者著作權法上之義務,預料將為兩造授權金協議過程的僵局,造成一定影響。 本案原告GEMA主張被告YouTube應採取措施,阻止其享有權利之12個影音檔案,繼續透過YouTube平台在德國境內流通。而本案的爭點即在於:對於YouTube平台上由網友上傳、且涉嫌侵害著作權的影片內容,被告移除及防止侵害的責任範圍究竟多大。 本案法院認為,因被告本身並非將違法內容上傳之行為人,無法以德國電信服務法(TMG)第7條規定,課予其侵權行為人責任(Täterhaftung)。但被告因提供、經營平台,對著作權侵害有所「貢獻」,故法院依TMG第10條規定,認定被告YouTube僅在知悉特定侵權情事的情況下,才負擔移除或阻斷網路接取的義務;而當平台業者收到著作權侵害的通知後,便須立即阻斷涉嫌侵權的影片,並採取合理的措施,防止侵權行為再發生。然而,法院也強調,平台業者只負擔「合理」的檢查及管控義務,故平台業者毋須逐一檢視所有已上傳的影片。 按本案法院見解,所謂合理的措施,包括YouTube須利用其所研發的「內容識別系統Content-ID」,防止特定的侵權內容再次發生。另YouTube也負擔加裝文字過濾軟體的義務,以杜絕含有特定標題或關鍵字之影片上傳至平台。 據了解,雙方均發表聲明對此判決結果表示肯定。除原告得以主張其所享有的著作權外,YouTube也認為法院明確界定影視平台業者應作為的義務範圍。但對原告GEMA來說,重點在如何透過訴訟程序對YouTube施壓,重啟授權金的談判。兩造後續對長久來授權金計算公式的歧異將如何達成共識,值得關注。
基因改良作物命運大不同身為世上最大基因改良( GMO)棉花生產者的 中國大陸 ,已經批准將經過基因改良的混種棉花進行商業化,預料可以解決生活日用品上的短缺。相對於此, 歐盟 的農業部長們,卻對於是否批准編號1507的基因改良玉米,陷入一個進退維谷的困境。但是經過8年激烈的反對, 丹麥 卻允許基因改良玉米的進口。 而在 美國 有 85﹪的大豆,76﹪的棉花,45﹪的小麥是經過基因改良的。至於 澳洲 農業與資源經濟局則最近則對基因改良作物做出一份報告,認為各省禁止基因改良食品會減小經濟效益,使 澳洲 面對世界各地日益增多的基因改良作物發展,屈居弱勢。至終可能會在十年後造成1.5億到6億澳幣的損失。
歐洲將限制對孩童販售暴力遊戲軟體歐洲各國司法部長於1月16日與歐盟司法與內政委員會委員Franco Frattini進行會商,包括德國、英國、希臘、芬蘭、西班牙以及法國之司法部長皆同意支持建立全歐一致之共同規範以限制對孩童販售暴力遊戲軟體,並將據此檢視各國電腦軟體相關法制。 Franco Frattini委員過去基於「兒童保護應不分國界」之理念,曾建議建構以歐盟為範圍的標識規範,並鼓勵以兒童為銷售對象之遊戲業者建立自律規約,惟歐盟最後決議應交由各國政府自行規範。而Franco Frattini委員此次提案受到本屆歐盟輪值主席國-德國-司法部長Brigitte Zypries的支持,並指示相關規範建構之第一步,即是出版遊戲軟體分級摘要供家長參考,此摘要將很快於歐盟網站上公布。Zypries認為關於暴力遊戲的限制,歐盟應與國際進行合作溝通,由其針對美國與日本;Frattini則期望在歐盟27個會員國建構專門針對此類遊戲的標識規範,至於其他種類之遊戲則仍由各國政府自行管理。 目前國際間針對暴力遊戲限制,多數國家仍採取提供遊戲分級或相關指導守則之方式,於歐洲,僅英國與德國特別訂定法律加以規範,尤其在英國,遊戲軟體內容若具有對人類或動物之寫實暴力場景,或包含人類的性愛行為者,必須送交英國電影分級委員會(British Board of Film Classification,簡稱BBFC)審查。而美國已有部分州議會通過限制對未成年人販售遊戲的法律,但幾乎皆被「違反美國憲法修正條文第1條-言論自由保障」之理由成功推翻。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。