位於歐洲東北部全國人口約僅有130萬的愛沙尼亞為了吸引更多外資與新創家前往,除了廣推網路登記公司設立、網路銀行,以及透過網路管理公司營運等改善投資環境相關措施之外,更領先全球推出網路市民證「e-Residency Card」。
隨著科技與網路的快速發展,網路市民證的推出打破了國家與地域疆界的限制,讓即使不住在愛沙尼亞的人士也可利用網路於18分鐘內完成登記設立公司流程。申請愛沙尼亞網路銀行相關服務與帳號、運營公司、進行線上簽章/簽約,甚至完成報稅等,讓外資、新創家大幅簡化公司申請設立程序與進入門檻。
此外,網路市民證也提供新創事業免除營業所得稅,吸引了眾多新創家前往該國創業,並於該項政策施行的前七個月內讓超過4,000名的新創家前往申請。同時,由於愛沙尼亞為歐盟會員國之一,因此也使外資與新創家在愛沙尼亞投資設立公司後,等同於在歐盟境內設立營運據點,成為進入歐盟市場的敲門磚。
正因為網路市民證所獲得的成功迴響,愛沙尼亞政府進而推行網路市民計畫「e-Residency Program」強化此項優惠政策,預計讓網路市民人數增加至數百萬人,活絡愛沙尼亞的經濟產業體系,進而傳播愛沙尼亞文化與知識。
2025年12月初,澳洲數位轉型局(Digital Transformation Agency,下稱DTA)發布《政府負責任使用AI政策2.0》(Policy for the responsible use of AI in Government 2.0),旨在進一步強化公部門在AI的透明度、問責性與風險管理能力,於2025年12月15日生效,取代 2024年9月實施的過渡版本。 一、適用範圍 政策適用於所有非企業型聯邦實體(Non-corporate Commonwealth entities),即不具獨立法人地位、直接隸屬於政府的機關或單位。企業型聯邦實體則被鼓勵自願遵循。政策定位為「補充與強化既有法制」,非另訂獨立規範,因此在實務中須與公務員行為準則、資安規範及資料治理制度併行適用。 二、政策重點 在政策施行的12個月內,適用機關須完成以下要求,以確保落實AI治理架構: (一)制度建置 1. AI 透明度聲明:機關須在政策生效後 6 個月內發布「AI 透明度聲明」,公開 AI 使用方法與現況。聲明中須說明機關風險管理流程、AI 事件通報機制及內外部申訴管道,確保使用過程透明、可追蹤。 2. 人員指定與培訓: 機關須指定制度問責人員(Accountable officials)以及AI使用案例承辦人(Accountable use case owners)。 所有員工皆須進行關於負責任使用AI的培訓,機關並依員工職務權責提供個別員工進階訓練。 3. 建立內部AI使用案例註冊清單(Internal AI use case register),以供後續追蹤 該清單至少包含: (1)使用案例負責人(Accountable use case owners):記錄並持續更新範疇內 AI 使用案例的指定負責人。 (2)風險等級(Risk rating):AI使用案例的風險等級資訊。 (3)異動紀錄:當使用案例的風險評級或負責人變更時,須即時更新清單。 (4)自定義欄位:各機關可根據其需求,自行增加欄位。 (二)AI 使用案例範疇判斷 機關須在評估所有新案例,依以下特徵判斷AI應用是否屬於「範疇內(In-scope)」的應用: 1.對個人、社群、組織或環境造成重大損害。 2.實質影響行政處分或行政決策。 3.在無人工審查的情況下,大眾將直接與AI互動或受其影響。 4.涉及個人、敏感資料等資訊。 (三)進階風險評估 依AI影響評估工具(Impact Assessment Tool)針對公眾近用權;不公平歧視;加重刻板印象;損害人、組織或環境;隱私顧慮;資料敏感之安全顧慮;系統建置之安全顧慮;公眾信任等8類別,加以判斷範疇內AI應用,若有任一類別被評為「高風險」,即判定為「高風險」;若所有類別中最高的分數為「中風險」,則整體判定為中風險。 判定為中、高風險之AI應用,均需進行全面審核。中風險須列出所有中風險項目及其控管措施,主要為內部控管;而高風險則要求向DTA報告,且每年至少進行一次全面審核與風險再評估。 澳洲欲透過發布AI透明度聲明、更新AI使用案例註冊清單、強制執行AI應用之風險評估及人員培訓,確保公部門對AI的負責任使用與問責。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,落實AI資料管理與追蹤。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險 資訊工業策進會科技法律研究所 2024年03月11日 人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。 壹、事件摘要 英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。 AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。 貳、重點說明 AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容: 一、AI保證之適用範圍: (一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。 (二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。 (三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。 (四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。 二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。 (一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。 (二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。 (三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。 三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。 (一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。 (二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。 (三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。 (四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。 (五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。 (六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。 四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項: (一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。 (二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。 (三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。 (四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。 (五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。 五、建構AI保證的步驟(Steps to build AI assurance) (一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。 (二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。 (三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。 (四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。 (五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。 參、事件評析 AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。 隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。
美國聯邦審計署發布先進空中交通議題研究報告,將有利於航空轉型美國聯邦審計署(Government Accountability Office, GAO)於2022年5月9日發布「航空轉型:經利害關係人確認之先進空中交通議題」(Transforming Aviation: Stakeholders Identified Issues to Address for 'Advanced Air Mobility')研究報告。未來,先進空中交通(Advanced Air Mobility, AAM)服務可透過小型或高度自動化(highly-automated)電動垂直起降航空器(eVTOL)翱翔於天際,不僅可提供載人或載物服務、減少交通壅塞,並可應用於救援與醫療運輸等領域。GAO透過訪談36位利害關係人,意識到AAM發展關鍵在於相關法制環境之整備速度。基此,GAO於研究報告中,整理當前各AAM新創業者於開發與落實上面臨之4大問題,分別簡述如下: (1)航空器檢定標準:美國聯邦航空總署(Federal Aviation Administration, FAA)對於航空器之檢定規範,目前尚未涵蓋具備AAM新功能之載具,如電力推進或垂直起降等。 (2)起降場與電力之基礎設施:FAA尚未制定垂直機場降落設施,及航空器電池充電需求之電力基礎設施相關標準。 (3)提高公眾載具安全性接受度:AAM產業須證明此類航空器之安全性、可靠性、低噪音與商用可行性,以支持該產業之發展與成長。 (4)作業人員所需之各種培訓與認證標準:飛行員與維修技術作業人員需接受相關新功能培訓。惟利害關係人指出可能面臨高教育成本、缺乏工作場域多樣性、機會意識(awareness of opportunities)不足,及培訓能力有限等問題。