YouTube網站被控侵害著作權

  美國新聞記者兼直昇機飛行員 羅伯特爾( Robert Tur )於 7 14 控告近來迅速竄紅的影片分享網站 YouTube 侵害著作權,特爾指稱 YouTube 網站鼓勵用戶拷貝受到保護的影片資料,此舉違反了 2005 年一項美國最高法院的判決( MGM v. Grokster ,該判決認為 P2P 軟體業者若蓄意鼓勵或誘使客戶從事線上盜版行為,即可能構成著作權侵害。


  羅伯特爾聲稱,他所拍攝的
1992 年洛杉磯暴動事件以及 1994 年高速公路上追捕辛普森的直昇機空拍報導影片,未經他的同意就被上傳並在 YouTube 網站上廣為流傳。 特爾亦聲稱, YouTube 網站從他的作品中獲利,同時也侵害了他的著作權,因此提出了 15 萬美元賠償要求並要求網站不得再使用他的影片資料。


  
YouTube 網站發表聲明指出,自獲悉特爾提出告訴的消息後,網站就已經將他的影片撤下,另一方面認為網站的行為完全符合「一九九八年 數位千禧年著作權法案」﹙ Digital Millenium Copyright Act of 1998 ﹚之規定,應受到該法案免責條款的保護

相關連結
※ YouTube網站被控侵害著作權, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=728&no=16&tp=1 (最後瀏覽日:2026/02/19)
引註此篇文章
你可能還會想看
自動駕駛車輛之分級與責任

  所謂自動駕駛(autopilot),原來是指一個用來控制載具軌道而無需人工一直干預的系統,亦即無須人類持續干預,但人類仍須於關鍵時刻介入進行決定或作為,此時機器僅作為輔助。   而自動駕駛汽車或稱全自動駕駛,則只完全無須人類干預,由機器自動感應偵測,自動做成決策控制車輛行駛。故由人類的介入程度區別究竟是駕駛輔助或自動駕駛。美國國家公路交通安全管理局(NHTSA)於2016年已提出正式的分類系統,除手動駕駛(0級)外,區分弱駕駛輔助(1級)、部分自動駕駛(2級)、有條件全自動(3級)、高度/完全自動化(4級)不同程度的自動駕駛。其他國家如德國,在聯邦政府的「自動駕駛圓桌會議」也對自動駕駛有類似的四等級區分。   德國聯邦政府也在於2017年1月25日提出規範自動駕駛之法律草案,亦即道路交通法修正法(Änderung des Straßenverkehrsgesetzes),核心在於賦予電腦與人類駕駛者法律上同等地位。亦即,駕駛人的定義未來擴張延伸到「使用不同程度自動駕駛系統者」。根據草案將來在車輛行駛中,人類可以在特定時間與特定狀況下接管整個行駛。而最重要的修正:人類始終應該負使用電腦的最終責任。   故在行駛中駕駛人將會被輔助機器替代,更要求自駕系統應該具備“隨時可以由駕駛人接手操控或停俥”的功能。 分類中,駕駛人的角色只有到全自動駕駛實現時才退場,屆時才會發生無駕駛人只有乘客的狀況。   修法也重視自駕技術失敗並導致事故所生責任分擔的問題。對於責任的調查將採用如同飛航安全中之「黑盒子」的方式,該裝置會記錄行駛中的所有基本資料。這將有助於發生事故後澄清,查明究竟是技術上原因、製造商或駕駛員的過失,以確保駕駛人無法將責任全部推給自動化系統的故障。

印度政府公告個人資料保護法草案

  2018年7月27日印度電子及資訊科技部(Ministry of Electronics and Information Technology, MeitY)公告個人資料保護法草案(Protection of Personal Data Bill),若施行將成為印度首部個人資料保護專法。   其立法背景主要可追溯2017年8月24日印度最高法院之判決,由於印度政府立法規範名為Aadhaar之全國性身分辨識系統,能夠依法強制蒐集國民之指紋及虹膜等生物辨識,國民在進行退稅、社會補助、使用福利措施等行為時都必須提供其個人生物辨識資料,因此遭到人權團體控訴侵害隱私權。最高法院最後以隱私權為印度憲法第21條「個人享有決定生活與自由權利」之保護內涵,進而認為國民有資料自主權,能決定個人資料應如何被蒐集、處理與利用而不被他人任意侵害,因此認定Aadhaar專法與相關法律違憲,政府應有義務提出個人資料專法以保護國民之個人資料。此判決結果迫使印度政府成立由前最高法院BN Srikrishna法官所領導之專家委員會,研擬個人資料保護法草案。   草案全文共112條,分為15章節。主要重點架構說明如下: 設立個資保護專責機構(Data Protection Authority of India, DPAI):規範於草案第49至68條,隸屬於中央政府並由16名委員所組成之委員會性質,具有獨立調查權以及行政檢查權力。 對於敏感個人資料(Sensitive personal data)[1]之特別保護:草案在第4章與第5章兩章節,規範個人與兒童之敏感個人資料保護。其中草案第18條規定蒐集、處理與利用敏感個人資料前,必須獲得資料主體者(Data principal)之明確同意(Explicit consent)。而明確同意是指,取得資料主體者同意前,應具體且明確告知使用其敏感個人資料之目的、範圍、操作與處理方式,以及可能對資料主體者產生之影響。 明確資料主體者之權利:規範於草案第24至28條,原則上資料主體者擁有確認與近用權(Right to confirmation and access)、更正權(Right to correction)、資料可攜權(Right to data portability)及被遺忘權(Right to be forgotten)等權利。 導入隱私保護設計(Privacy by design)概念:規範於草案第29條,資料保有者(Data fiduciary)應採取措施,確保處理個人資料所用之技術符合商業認可或認證標準,從蒐集到刪除資料過程皆應透明並保護隱私,同時所有組織管理、業務執行與設備技術等設計皆是可預測,以避免對資料主體者造成損害等。 指派(Appoint)資料保護專員(Data protection officer):散見於草案第36條等,處理個人資料為主之機構、組織皆須指派資料保護專員,負責進行資料保護影響評估(Data Protection Impact Assessment, DPIA),洩漏通知以及監控資料處理等作業。 資料保存之限制(Data storage limitation):規範於草案第10條與第40條等,資料保有者只能在合理期間內保存個人資料,同時應確保個人資料只能保存於本國內,即資料在地化限制。 違反草案規定處高額罰金與刑罰:規範於草案第69條以下,資料保有者若違反相關規定,依情節會處以5億至15億盧比(INR)或是上一年度全球營業總額2%-4%罰金以及依據相關刑事法處罰。 [1]對於敏感個人資料之定義,草案第3-35條規定,包含財務資料、密碼、身分證號碼、性生活、性取向、生物辨識資料、遺傳資料、跨性別身分(transgender status)、雙性人身分(intersex status)、種族、宗教或政治信仰,以及與資料主體者現在、過去或未來相連結之身體或精神健康狀態的健康資料(health data)。

美國OMB發布人工智慧應用監管指南備忘錄草案

  美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。   該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。   此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。

歐洲理事會提出糧食安全年度策略研究議程以整合歐盟研究能量

  為因應近年來人口增長、氣候變遷對糧食安全之威脅,歐洲各國皆認為糧食安全( Food Security)議題為亟待解決之議題,應投入資源研究。為此,2012年歐洲理事會(The European Council),始提出FACCE-JPI策略研究議程(The Strategic Research Agenda of the Joint Programming Initiative on Agriculture, Food Security and Climate Change),議程主要係針對歐洲農業、糧食安全和氣候變化進行整合研究。來自21個歐洲國家代表及研究學者,提出該年度糧食安全之重要觀察議題與發展方向,欲透過此議程建立研究資源整合機制,提高歐盟因應糧食生產挑戰之研究、應對能力。    歐洲理事會於去年(2012)12月提出本年度策略研究議程,內容除重申歐盟應整合糧食安全研究能量外,該議程更指出五大核心研究議題,反映歐盟對糧食安全威脅多元化之重視 ,本議程研究重點歸納如下: 1. 氣候變遷與糧食安全永續 2. 環境永續發展與農業精緻化 3. 糧食供需、生物多樣性與生態系統平衡 4. 氣候變遷之因應 5. 減緩氣候異常現象之有效措施   本議程以核心研究為理論基礎,有效整合各會員國研究能量,更針對各別領域提出具體實踐策略,藉以強化基礎溝通平台、建立歐洲知識訊息交換能力,便利後續評估、監測機制的建立。   策略議程取代傳統將糧食安全視為「國家內政」議題,而以「區域整合」層次處理,象徵歐盟糧食安全共識逐漸發展之趨勢。

TOP