美國聯邦法院裁定執法部門無搜索令要求提供手機位置記錄並未違憲

  美國聯邦第六巡迴上訴法院於2016年4月13日就U.S. v. Timothy Ivory Carpenter & Timothy Michael Sanders案作出判決,裁定執法機關在未取得搜索令的情況下要求出示或取得手機位置記錄,並不違反憲法增修條文第4條。美國憲法增修條文第4條規定:「人人具有保障人身、住所、文件及財物的安全,不受無理之搜索和拘捕的權利;此項權利,不得侵犯;除非有可成立的理由,加上宣誓或誓願保證,並具體指明必須搜索的地點,必須拘捕的人,或必須扣押的物品,否則一概不得頒發搜索令。」

  本案事實係聯邦調查局取得兩名涉及多起搶劫案之嫌疑人的手機位置,而根據手機位置之相關資料顯示,於相關搶案發生之時間前後,該二名嫌疑人均位於事發地半英哩至兩英哩的範圍內,故該二名嫌疑人隨後被控多項罪名。在肯認與個人通訊相關之隱私法益的重要性的同時,聯邦第六巡迴上訴法院認為,「縱使個人通訊之內容落於私領域,但是為了將該些通訊內容自A地至B地所必須之資訊,則非屬私領域之範疇。」聯邦第六巡迴上訴法院拒絕將憲法增修條文第4條的保護延伸至像是個人通訊或IP位址等之後設資料(metadata),其原因在於,蒐集此等資訊或記錄並不會揭露通訊的內容,因此本案之嫌疑人就聯邦調查局所取得之資訊並無隱私權之期待。法院認定,此等行為不同於自智慧型手機取得資訊,因為後者「通常而言儲存了大量有關於特定使用人之資訊。」

  2015年11月9日,美國聯邦最高法院拒絕審理Davis v. United States案,該案係爭執搜索令於執法部門要求近用手機位置資料時之必要性。加州州長Jerry Brown於2015年10月亦簽署加州電子通訊法(California Electronic Communications Act, CECA),該法禁止任何州政府的執法機關或其他調查單位,在未出示搜索令的情況下,要求個人或公司提供具敏感性之後設資料。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國聯邦法院裁定執法部門無搜索令要求提供手機位置記錄並未違憲, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7281&no=64&tp=1 (最後瀏覽日:2025/12/09)
引註此篇文章
你可能還會想看
對AI下達複雜、反復修改指令不算創作行為? —美國著作權局發布AI著作權報告第2部分:可受著作權保護性

.Pindent{text-indent: 2em;} .Noindent{margin-left: 22px;} .NoPindent{text-indent: 2em; margin-left: 38px;} .No2indent{margin-left: 54px;} .No2Pindent{text-indent: 2em; margin-left: 54px} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 對AI下達複雜、反復修改指令不算創作行為? —美國著作權局發布AI著作權報告第2部分:可受著作權保護性 資訊工業策進會科技法律研究所 2025年02月10日 由於生成式AI是根據使用者輸入的提示或稱指令(prompts),依機率分布推算生成出最有可能出現的結果,因此有人戲稱AI在每次生成時都是在隨機進行「擲骰子」,即便相同的提示也可能會得到有差異的輸出結果。為應對AI回應的不確定性和多樣性,如何下達提示,有效使用AI,為必須學習的課題。因此,有人說訓練不了人工智慧?我們可以訓練自己,但用心思考精準有效指令,費心對AI生成結果進行反復修改,就能取得著作權保護嗎?美國著作權局提出的看法,或許與大家的期待不同。 壹、事件摘要 美國著作權局今(2025)年1月發布AI著作權報告的「第2部分:可受著作權保護性(Part 2: Copyrightability)」[1]。為幫助評估AI著作領域的立法或監管措施是否必要,該局於2023年8月即發布「著作權與人工智慧議題徵詢通知(Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence)」,對外尋求對包括涉及使用受著作權保護的作品來訓練AI模型的問題、適當的透明度與揭露程度受著作權保護的作品的使用以及AI生成內容的法律定位等問題的意見[2]。在分析AI引發的著作權法與政策問題的意見徵詢結果後,美國著作權局於2024年7月31日,以數位複製物(digital replicas)主題,發布「著作權與人工智慧分析人工智慧引發的著作權法和政策議題」(Copyright and Artificial Intelligence analyzes copyright law and policy issues raised by artificial intelligence)報告的第1部分[3],並隨後於今(2025)年1月發布報告的「第2部分:可受著作權保護性(Part 2: Copyrightability)」[4]。 此報告指出現有的法律原則可根據個案判斷是否具有足夠的人為貢獻,有足夠的彈性足以解決關於AI生成內容是否具有著作權的問題,並不需要修法;當人工智慧被用作工具,且人類能夠決定作品的表達元素時,對AI生成結果的創意選擇、協調或安排,以及對生成結果的創意修改,都可獲得著作權保護;但目前使用者即使給予AI詳細的提示,也無法控制AI如何生成內容,不足以使其成為「作者」;著作保護仍須以人為創意投入,既有法令已足以激勵AI發展,沒有理由為AI生成的內容提供額外的著作權或特殊權利保護。 貳、重點說明 一、AI系統的輸出存在不可控制性[5] 當前生成式AI系統的輸出可能包括未指定的內容,在有數十億個參數的模型構建的複雜AI系統下,特定提示或其他輸入對於AI生成內容的影響存在不確定性,即使是專家研究人員在理解或預測特定模型行為的能力方面也受到限制。不僅AI生成的內容會因請求而異,而且即使具有相同的提示也是難以預測的,即使有AI系統例如Midjourney允許使用者控制生成一致的結果,在重複相同的提示時收到幾乎相同的圖像,然而即使如此也無法保證完美的一致性。 二、有辛勤努力、指示建議不等於有創造性貢獻 (一)無法僅因時間和努力而獲得著作權保護,它需要原創性 (originality),無論原創性有多麼低微 美國的著作權保護限於人類的創作(human authorship) 沒有任何法院承認非人類創造(non-human creation)的著作權。當然在使用AI的大多數情況下,人類將參與創作過程(creation process),並且在他們的貢獻符合創作資格的範圍時,能使其作品具有著作權。美國上訴法院(Supreme Court)明確表示,需要的是原創性 (originality),而不僅僅是時間和努力。在「Feist Publications, Inc. v. Rural Telephone Service Co.」案中,法院否定僅憑「血汗」(sweat of the brow)就足以獲得著作權保護的主張,但法院也認為絕大多數作品都很容易達到標準,因為所需的創造力水平極低;即使是很小的量、無論多麼粗糙、卑微或顯而易見都無妨(no matter how crude, humble or obvious’ it might be.)[6]。 (二)使用機器作為工具並不會否定著作權保護,如果作品已包含足夠的人類創作表達元素(human-authored expressive elements) 對於AI工具的使用是否影響著作權保護,美國著作權局提及在「Burrow-Giles Lithographic Co. v. Sarony」案中,法院將「作者」定義為「任何事物起源的人、創始人、製造者、完成科學或文學作品的人。(he to whom anything owes its origin; originator; maker; one who completes a work of science or literature.)」。法院確定了即使是使用照相機,攝影師也有許多創造性貢獻,包括將主題置於相機前,選擇和安排服裝、窗簾與其他各種配件、安排主題以呈現優雅的輪廓,以及喚起其所需的表情[7]。因此能否受保護的重點不在於有無使用工具,而是創造性投入的有無。 (三)「作者」必須是實際創作作品,即將想法轉化為有形呈現的表達的人,不包括只是提供詳細的建議和指示或做無實質改變轉換的人 美國著作權局在報告中指出,上訴法院在「Community for Creative Non-Violence v. Reid, "CCNV"」案中,認為:繪製設計草圖和以有形的表達媒介實現創意,使藝術家成為作者。該案的哥倫比亞特區巡迴法院明確表示,委託雕塑並提供詳細的建議與指示是不夠的,因為此類貢獻構成不受保護的想法,其不能因此成為雕塑的共同作者。而第三巡迴上訴法院在「Andrien v. Southern Ocean County Chamber of Commerce」案中, 認為原告「明確指示了副本的準備工作的具體細節」,因此「編譯只需要簡單的轉錄即可實現最終的有形形式」。因為印刷商「沒有實質改變原告的原始表達(original expression)」,法院裁定原告是「作者」[8]。 因此,該局認為儘管人工智慧生成內容不能被視為使用者與人工智慧系統的共同作品(joint work),但對於是否貢獻足夠的表達以被視為作者,提供有用的類比—僅僅向作者(AI)描述委託作品應該做什麼或看起來像什麼的人,並不是著作權法意義上的共同作者。 三、AI的創作輔助使用 美國著作權局同意,使用人工智慧作為輔助創作作品的工具與使用人工智慧作為人類創造力的替代品之間存在重要區別。雖然增強人類表達的輔助使用不會限制著作權保護,但認為需要進一步分析下列三種使用方式的差異: (1)指示人工智慧系統產生輸出的提示(prompts); (2)可以在人工智慧生成內容中感知到的表達性輸入(expressive inputs) (3)對人工智慧生成內容進行修改或安排(modifications or arrangements)。 (一)指示人工智慧系統產生輸出的提示(prompts) 由於欠缺對生成結果的控制能力,使用者即使輸入複雜的提示指令亦無法讓其成為「作者」[9]。提示本質上是傳達不受保護的思想,雖然高度詳細的提示可以包含使用者所需的表達元素,但目前的AI技術無法僅靠提示即能給予使用者足夠的人工控制,所以AI 系統的使用者無法成為生成內容的「作者」。雖然在輸入提示可以被視為類似於向受委託創作的藝術家提供指導,但在人與人之間的合作,委託者能夠監督、指導與理解受委託的人類藝術家的貢獻,但這情況目前不存在於人與AI的合作。或許將來可允許使用者對AI的生成內容取得完全的控制權,讓AI的貢獻變成固定或機械化(rote or mechanical)。 由於提示與結果輸出之間的差距,以及相同的提示可以生成多個不同生成內容的事實,進一步表明使用者缺乏對將他們想法轉換為固定表達的控制。而反覆修改提示不會改變、也無法為取得著作權提供足夠的依據,因為著作權保護的是作者身份,而不是辛勤工作。而且美國著作權局認為輸入修改後的提示與輸入單個提示在作用上似乎沒有實質性區別,對過程的控制程度都沒有改變。 不過,有些評論意見舉自然攝影作品做類比,認為即使攝影家無法控制野生動物何時進入畫面,這些作品也可能有資格獲得著作權保護。但美國著作權局認為,這與AI生成不同—攝影家的創作過程並沒有結束於他對作品的想法,其在照相機中控制角度、位置、速度和曝光的選擇,且可能進行作品的後製調修。該局指出「從(AI系統)提供的選項(生成結果)中進行選擇」不能被視為受著作權保護的作者身份, 因為「單一輸出的選擇本身並不是一種創造性的行為」。但該局也表示有時提示可以充分控制AI生成內容中的表達元素,如果AI技術進一步為使用者提供表達元素的更多控制,則結論可能會不同。 (二)富有表現力的輸入(Expressive Inputs)[10]與純粹指令不同 目前AI 系統接受以文本、圖像、音訊、視頻或這些內容形式的輸入,而可以將輸入保留成生成內容的一部分,例如修改或翻譯受著作權保護的作品。這類型的輸入,雖然亦可視為不同形式的提示,但與僅僅是傳達預期結果的提示不同。它所給的不僅是一個概念,更重要的是它限制了AI生成內容的「自主性」。因此可能提供了「更具說服力的人工干預」,而不是簡單的「將提示應用於未知的起點」。美國著作權局認為一個人輸入自己受著作權保護的作品,如果該作品在生成的內容中是可察覺的(perceptible),那麼他至少是該部分生成內容的「作者」。此類 AI 生成輸出的著作權將涵蓋可察覺的人類表達,包括可能涵蓋到作者對作品素材(material)的選擇、協調和安排。 (三)修改或安排(Arranging)AI生成的內容仍可受保護[11] 美國著作權局於報告中指出,使用 AI 生成內容通常是一個初始或中間步驟,如同其AI 註冊指引的說明—「人類可以以足夠創造性的方式選擇或安排 AI 生成的內容,以使最終作品整體構成一個作者的原創作品(the resulting work as a whole constitutes an original work of authorship)」。人類可以藉由修改AI生成的內容,使其達到符合著作權保護標準的程度,如果人類作者以創造性的方式選擇、協調和安排 AI 生成的內容,應該能夠主張著作權。例如:Midjourney 提供「Vary Region and Remix Prompting」,允許使用者使用提示來指定生成圖像的區域。美國著作權局認為此類可以讓使用者控制各個創意元素的選擇與放置的修改,是否達到最低原創性標準雖將取決於具體個案情況。但其認為就生成的內容位置可控制的案例,與純粹提示(prompts alone)情況不同,生成的內容應該受著作權保護。 參、事件評析 在美國著作權局公布其該報告之後,有網路媒體[12]以「美國著作權局定調:光靠提示詞的純AI生成圖片無法享有著作權保護,無論你下多複雜的提示詞都沒有」的標題,詮釋該報告的主旨。確實美國著作權局於該報告中,特別指出下達複雜與反復的提示,並不會影響著作權保護的取得與否的判斷。但關鍵點不在於提示本身,而是對AI生成結果的「可控制」(或可說是AI對生成結果的自主)程度。 對於AI生成結果的著作權保護,經濟部智慧財產局曾以電子郵件1070420號函指出:「著作必須係以自然人或法人為權利義務主體的情形下,其所為的創作始有可能受到著作權的保護。據了解,AI(人工智慧)是指由人類製造出來的機器所表現出來的智慧成果,由於AI並非自然人或法人,其創作完成之智慧成果,非屬著作權法保護的著作,原則上無法享有著作權。但若其實驗成果係由自然人或法人具有創作的參與,機器人分析僅是『單純機械式的被操作』,則該成果之表達的著作權由該自然人或法人享有。」,但何謂「單純機械式的被操作」?以複雜與反復的提示再擇取AI符合所需的AI修改結果,是否屬之?在目前AI工具朝向「自動化」發展的趨勢下,使用者下達提示後,多只須被動的對單一的生成結果,決定是否接受或重新下達指令,使用者只是以指令提出需求,實際的「創作行為」主體其實是AI而非人類。因此,美國著作權局於此報告中更進一步的說明使用者即使有複雜與反復的提示且有意的選擇特定結果,並不能就認定為「對結果有控制權」的創作。必須其結果可為使用者主導、控制,而非被動決定是否接受。 相對而言,在創作的保護實務上,美國著作權局告訴我們的是,人類仍然可以藉由在使用過程提高對AI生成結果的控制程度,以及生成內容的後製,使結果符合著作權保護標準。AI使用者應該盡量使用有提供具體修改控制功能的AI工具,只要有人為的事後修改,或使用過程中能具體主導AI生成的結果,我們仍然可以透過複雜與反復的提示AI,取得受著作權保護的生成結果。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 2: Copyrightability, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-2-Copyrightability-Report.pdf [2]US Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last visited Feb. 10, 2025). [3]US Copyright Office, Copyright Office Releases Part 1 of Artificial Intelligence Report, Recommends Federal Digital Replica Law, https://www.copyright.gov/newsnet/2024/1048.html (last visited Feb. 10, 2025). [4]U.S. Copyright Office Copyright and Artificial Intelligence, supra note 1. [5]詳前註1,頁5~7。 [6]詳註1,頁8。 [7]詳註1,頁9。 [8]詳註1,頁9。 [9]詳註1,頁18~21。 [10]詳註1,頁22~24。 [11]詳註1,頁24~27。 [12]電腦王,美國著作權局定調:光靠提示詞的純AI生成圖片無法享有著作權保護,無論你下多複雜的提示詞都沒有,https://www.techbang.com/posts/121184-the-us-copyright-office-has-set-the-tone-that-purely(最後瀏覽日:2025/02/10)。

美國公布「保護資通訊技術與服務供應鏈安全」行政命令

  美國總統川普於2019年5月依據「國際緊急經濟權力法」(International Emergency Economic Powers Act, IEEPA)之授權,訂定「保護資通訊技術與服務供應鏈安全」行政命令(Executive Order on Securing the Information and Communications Technology and Services Supply Chain)。目的係為避免因具有競爭關係之外國政府或機構,利用其設計、開發或製造之資通訊技術或相關服務之資安漏洞進行資料竊取或網路攻擊等行為。   川普總統認為,如未能對於相關之資通訊技術、產品或服務進行管制,將有提升美國資安風險之疑慮,進而對美國之國家安全、外交政策及經濟構成威脅,故應針對具有競爭關係之外國政府或機構所提供的相關資訊與通訊技術或服務,進行下列相關之措施: 禁止美國境內之相關單位(包含合夥、協會、信託等機構、合資企業、公司、集團或其他組織)取得、進口、轉讓、安裝、交易或使用具有資安風險而由競爭關係之外國政府或機構所擁有、控制、設計、開發、製造或供應的資通訊技術或服務。 授權由商務部長訂定具有競爭關係之外國政府或機構、資通訊技術或服務及上述禁止措施之相關認定標準及程序。 商務部長應與國務卿向國會提交本命令之經常性及最終報告;而國家情報總監及國土安全部,則應持續針對美國所面臨之相關風險威脅進行定期之識別與評估,並將評估內容提交予總統。

簡介「歐洲共同資料空間」

簡介「歐洲共同資料空間」 資訊工業策進會科技法律研究所 2022年09月30日 壹、前言   歐盟為促進數位經濟的發展,於2015年5月發布「數位單一市場(Digital Single Market)」政策,並指出資料(data)對於發展數位經濟的重要性 [1]。經過了5年的規劃,歐盟於2020年2月發布了「歐洲資料戰略(European Data Strategy)」,勾勒出建立歐洲「單一資料市場(single data market)」的具體措施與進程。   歐盟執委會(European Commission)在「歐洲資料戰略」中指出,為確保歐洲數位經濟的競爭力,應採取相關措施創造一個有吸引力的市場環境,其目標就是建立「歐洲共同資料空間 (Common European data space)」[2] 。本文以下將介紹「歐洲共同資料空間」的發展背景與現況。 資料來源:作者自繪 圖一 「歐洲共同資料空間」的政策發展脈絡 貳、「歐洲共同資料空間」的發展背景 一、源起   歐盟期待能建立一個真正單獨且對全世界開放的資料市場,各類資料能安全地存放其中,企業可輕易地近用高品質的產業資料,以加速企業的成長並創造更高的經濟價值[3]。在此資料空間中,資料的使用需要符合歐盟的法規,且所有資料驅動(data-driven)之服務和產品應符合歐洲「數位單一市場」的規範。因此,歐盟陸續制定相關法律和標準,建設相關基礎設施,期望能促進更多的資料在歐盟境內儲存和處理[4] 。歐盟執委會初期以「歐洲開放科學雲(European Open Science Cloud, EOSC)」的經驗為基礎[5] ,聚焦9個重點產業領域發展資料空間,其介紹如下表: 表一:「歐洲共同資料空間」9個重點產業領域 產業/領域 發展資料空間的目標 1 工業/製造業資料空間 挖掘「非個人資料」的潛在價值,以強化歐盟工業的競爭力,預計在2027年可以創造1.5兆歐元的產值 2 綠色協議(Green Deal)資料空間 支持氣候變遷、循環經濟、零污染、生物多樣性等行動 3 交通移動(Mobility)資料空間 強化運輸和交通移動資料庫的近用、整合、共享,確保歐盟的智慧運輸系統在全球的領先地位。 4 健康資料空間[6] 提升疾病預防、檢測、治療的發展,促進實證醫學發展的加速 5 金融資料空間 提升金融領域的資料共享、創新、市場透明度、永續金融 6 能源資料空間 透過安全和可信任的方式進行跨部門的資料共享,提升資料的可利用性,促進低碳的落實 7 農業資料空間 透過對農業生產等資料的分析,提升農業部門的競爭力。 8 公行(Public administrations)資料空間 提高政府支出的透明性和問責,強化政府科技、法遵科技、法律科技的應用 9 技能(Skills) 資料空間 降低教育培訓體系和勞動市場需求的落差 資料來源:整理自歐盟執委會2022年2月發布的工作報告 二、設計原則   歐盟執委會原訂於2020年第4季提出「歐洲共同資料空間」的具體規劃,但進度有所延遲。2021年3月歐盟理事會(European Council)認為需要加速建立共同資料空間,並請歐盟執委會說明各產業領域資料空間的進展及未來需要採取的必要措施。[7]   根據歐盟執委會2022年2月出版的工作報告指出,所謂的資料空間可以定義為相互信任夥伴間的一種資料關係,參與夥伴在儲存和共享資料時必須適用相同的標準和規則[8]。此外,在資料空間中,資料並非中心化儲存,而是儲存在其來源處,只有在必要時才會透過語義互操作性(semantic interoperability)共享資料[9]。而「歐洲共同資料空間」將根據以下的原則進行設計[10]: 1.資料控制(Data control)   資料空間可以促進資料工具的開發,以彙集、近用、使用、共享各種類型的資料。資料持有者可使用這些資料工具,簡化資料上傳的流程、授予或撤銷其資料授權、更改資料近用權限等。 2.治理(Governance)   建立適當的治理結構,確保以公平、透明、符合比例、非歧視的方式,近用、共享、使用資料,此治理結構應遵守歐盟現有的相關規範,如《非個人資料自由流通框架(Framework for the Free Flow of Non-Personal Data in the European Union)》、《歐盟一般個人資料保護規則(GDPR)》、等。 3.尊重歐洲的規範和價值觀(Respect of EU rules and values)   資料空間應遵守相關的歐盟法律框架,如GDPR、網路安全、基本權利、環境保護、競爭法、歐盟關於提供資料服務相關的規則等;此外,應採取適當的技術和法律措施,防止未經授權的資料近用。 4.技術基礎設施(Technical data infrastructure)   鼓勵資料空間之參與者使用共通的技術基礎設施,並整合網路安全的設計原則,建構能確保資料彙集、近用、共享、處理、使用之安全和隱私保護的基礎設施。 5.互連接性及互操作性(Interconnection and interoperability)   為避免資料碎片化(fragmentation)、整合成本過高、產生資料孤島等問題,「歐洲共同資料空間」參考國際標準、歐洲空間資料基礎設施(INSPIRE[11]) 、FAIR原則[12],強化資料空間的互操作性,並透過歐盟運算基礎設施[13]共享和近用資料,以達到相互連接和互相操作。 6.開放性(Openness)   只要願意遵守歐盟規範、尊重歐洲價值觀的使用者都可以利用「歐洲共同資料空間」。開放性將有助於創造不同產品和不同服務提供商間的競爭,避免因產品或服務製造商的特定協定(protocols)產生鎖定效應(lock-in)。 三、近期整體發展   首先,歐盟執委會強調,由於「歐洲共同資料空間」涉及各產業領域,每個產業領域都有其特性;即便是同一產業中,所涉及之利害關係人多元,其資料需求也會不同。因此,為避免對特定產業領域正在發展之資料共享解決方案產生影響,歐盟將著重於建立各產業共通的技術基礎設施和資料治理框架[14]。根據2022年5月歐盟正式發布的《資料治理法(Data Governance Act) 》,第六章中規定未來將成立「歐洲資料創新委員會(European Data Innovation Board, EDIB)」;依據該法第30條的規定,EDIB的任務之一是制定促進「歐洲共同資料空間」的指引,內容包含建立跨產業領域資料共享的標準、強化互操作性等[15]。   其次,根據歐盟執委會2022年8月出版的調查報告指出,截至2022年上半年為止,歐盟關於資料空間徵案的結果,主題不僅有最初規劃的9個產業領域[16],還擴及智慧城市、文化資產、媒體、財政、語言、旅遊、公部門採購與安全執法等產業領域[17]。此外,與這些產業領域相關的公部門開放資料集部分已經編目並放在歐盟data.europa.eu[18]的網站上,譬如該網站上目前有48,000筆關於交通運輸的資料集,未來可能對於「交通移動」領域資料空間的建立有幫助[19]。   再者,歐盟執委會為了瞭解歐洲目前所有資料空間的發展現況,以國際資料空間協會(International Data Spaces Association, IDSA)的「國際資料空間雷達(International Data Space Radar)」、歐洲非營利組織所倡議的「歐洲雲和資料基礎架構專案(Gaia-X)」、「歐洲工業數位化開放平臺(Open DEI)」為調查對象。根據研究結果,這3個組織目前共有151個和資料空間有關的計畫或措施,但其中僅只有21個使用了開放資料,且僅19個計畫有公部門參與其中[20]。歐盟執委會認為開放資料社群和各國公部門長期以來,在推動開放資料與建立開放資料標準已經累積一定的經驗,未來可以對「歐洲共同資料空間」提供更多的建議[21]。   最後,歐盟執委會將「歐洲共同資料空間」的利害關係人區分為四大類別,包含核心參與者、中介者、軟體/服務提供商、治理機構,並選定相關人士進行訪談,以聚焦「歐洲共同資料空間」未來的推動方向。根據訪談結果,所有受訪者皆指出目前「歐洲共同資料空間」發展的一個重大問題,亦即缺乏完整的資料集目錄。因此,受訪者建議未來「歐洲共同資料空間」的重點可放在發展資料集目錄[22]。 參、結論   從上述的整理可以發現,歐盟相當有系統性地推動「歐洲共同資料空間」,期待透過不同產業領域資料空間的互相連接,強化資料近用和互操作性,在促進資料共享和使用的同時,亦充分保護個人與企業的資料權利[23]。雖然歐洲各產業領域的資料空間仍在持續發展,但歐盟對於發展資料經濟的政策規劃,不管在基礎設施的建設、標準化的制定、法制面的配套,都值得我國持續關注。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] A Digital Single Market Strategy for Europe, at 14-15, COM (2015) 192 final (May. 6, 2015). [2] A European strategy for data, at 4, COM (2020) 66 final (Feb. 19, 2020). [3] id. at 4-5. [4] id.. [5] 關於「歐洲開放科學雲」的介紹可參考蔡立亭 ,〈論臺灣科研資料治理機制推行之模型-以歐洲開放科技雲為例〉,《科技法律透析》,第33卷第5期,頁21,(2021)。 [6] 關於「歐洲健康資料空間」近期的發展可參考施雅薰,〈歐盟執委會發布「歐洲健康資料空間」規則提案,旨在克服健康資料利用之障礙〉,資訊工業策進會科技法律研究所,https://stli.iii.org.tw/article-detail.aspx?no=67&tp=1&d=8858(最後瀏覽日:2022/09/27)。 [7] European Commission, Commission Staff Working Document on Common European Data Spaces 1(2022)。 [8] European Commission, data.europa.eu and the European Common Data Spaces 6(2022)。 [9] id. at 2. [10] European Commission, supra note7, at 3-4. [11] 關於「歐洲空間資料基礎設施」的介紹請參考INSPIRE KNOWLEDGE BASE,https://inspire.ec.europa.eu/(last visited Sep. 26, 2022). [12] Fair原則是可查找(Findable)、可近用(Accessible)、可相互操作(Interoperable)、可再使用(Re-usable) 的英文縮寫,相關介紹可參考GO FAIR,https://www.go-fair.org/fair-principles/(last visited Sep. 26, 2022). [13] 如歐洲雲服務或歐洲高效能運算(HPC)。 [14] European Commission, supra note7, at 4-5. [15] id. at 29-30. [16] 關於這9個產業領域2021-2023年間的規劃進度可參考European Commission, supra note 7, at 41-42. [17] European Commission, supra note 8, at 7. [18] 該網站設立於2021年4月,是整合European Data Portal及EU Open Data Portal兩個網站而成立。 [19] European Commission, supra note 8, at 8. [20] id. at 13. [21] id. at 5. [22] id. at 18. [23] European Commission, supra note 7,. at 2.

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP