美國聯邦第六巡迴上訴法院於2016年4月13日就U.S. v. Timothy Ivory Carpenter & Timothy Michael Sanders案作出判決,裁定執法機關在未取得搜索令的情況下要求出示或取得手機位置記錄,並不違反憲法增修條文第4條。美國憲法增修條文第4條規定:「人人具有保障人身、住所、文件及財物的安全,不受無理之搜索和拘捕的權利;此項權利,不得侵犯;除非有可成立的理由,加上宣誓或誓願保證,並具體指明必須搜索的地點,必須拘捕的人,或必須扣押的物品,否則一概不得頒發搜索令。」
本案事實係聯邦調查局取得兩名涉及多起搶劫案之嫌疑人的手機位置,而根據手機位置之相關資料顯示,於相關搶案發生之時間前後,該二名嫌疑人均位於事發地半英哩至兩英哩的範圍內,故該二名嫌疑人隨後被控多項罪名。在肯認與個人通訊相關之隱私法益的重要性的同時,聯邦第六巡迴上訴法院認為,「縱使個人通訊之內容落於私領域,但是為了將該些通訊內容自A地至B地所必須之資訊,則非屬私領域之範疇。」聯邦第六巡迴上訴法院拒絕將憲法增修條文第4條的保護延伸至像是個人通訊或IP位址等之後設資料(metadata),其原因在於,蒐集此等資訊或記錄並不會揭露通訊的內容,因此本案之嫌疑人就聯邦調查局所取得之資訊並無隱私權之期待。法院認定,此等行為不同於自智慧型手機取得資訊,因為後者「通常而言儲存了大量有關於特定使用人之資訊。」
2015年11月9日,美國聯邦最高法院拒絕審理Davis v. United States案,該案係爭執搜索令於執法部門要求近用手機位置資料時之必要性。加州州長Jerry Brown於2015年10月亦簽署加州電子通訊法(California Electronic Communications Act, CECA),該法禁止任何州政府的執法機關或其他調查單位,在未出示搜索令的情況下,要求個人或公司提供具敏感性之後設資料。
本文為「經濟部產業技術司科技專案成果」
寢具零售業者Snooze坦承,其於2008年10月所進行的「雙價標示」廣告活動中,將某些商品的價格以「原價 /現價」的形式加以呈現,此種行為可能誤導或欺騙消費者,而違反了貿易行為法(Trade Practices Act 1974, TPA)。 經澳大利亞公平競爭和消費者委員會(Australian Competition & Consumer Commission, ACCC)稽核Snooze的「雙價」廣告後,Snooze坦承此一活動中所標示之「原價」僅是參考公司內部所設定的建議零售價格,而不是於活動開始前在市場上經過一段合理銷售期間的真實價格。Snooze已同意對所有已知購買產品的客戶提供一封道歉信及50澳幣的購物禮券。 ACCC主委Graeme Samuel指出:「廣告中所出現的原價必須是先前於一段合理期間內實際所出售的真正價格。」基此,ACCC已提供最新的雙價廣告的規範指南,規範之宗旨在於,以此種廣告活動進行優惠行銷時,不得以比較價格之方式傳遞錯誤的訊息,該優惠必須是實質上的確對消費者有利之價格。而依據下列之標準可判斷廣告是否違反貿易行為法: 1.優惠方案必須真正有提供優惠:提供價格比較時,該較高的價格應為實際曾用以銷售之價格,且於考量所有相關因素後,仍得認為該優惠的確存在。而該優惠產品也必須是在高價時也很容易被取得之狀況,才能確保該優惠並非一誤導之行為。 2.優惠價格應為一暫時的價格:以「雙價」方式促銷時,該優惠價格存續之期間不得比原價更長,否則即有誤導消費者之嫌。 3.廣告中的較高價格乃為實際曾於一合理期間內之銷售價格:該較高價格不得從未或於過短期間內作為實際銷售之價格,而判斷何謂合理期間可參考下列三種因素:(1)預期該商品銷售的時間長度(2)商品價格之正常波動情形為何(3)「雙價」促銷活動的時間長短。
美國陪審團裁定Rambus未違反反托拉斯法及其行為未構成欺詐美國聯邦法院陪審團(San Jose, California federal jury) 於2008年3月26日裁定Rambus之記憶體晶片專利未違反反托拉斯法 (anti-trust)及於制定晶片業重要標準時未非法欺騙JEDEC(Joint Electron Device Engineering Council)成員。 記憶體製造商Hynix Semiconductor, Micron Technology 及台灣南亞科技公司指控Rambus 的專利違反了反托拉斯法,企圖透過其專利壟斷六個技術市場。前三家公司並認為依法專利不得涵蓋產業組織JEDEC的設計規格,指控Rambus 的專利涵蓋關於DRAM介面技術的JEDEC行業標準中的內容。 此三家公司另指控Rambus於產業標準制定過程中蓄意扭轉關鍵JEDEC標準的制定,構成欺詐之行為。 但陪審團於3月26日的審判中否決原告的控訴,認為原告未能提出足夠證據以證明被告之違反反托拉斯法與欺詐行為。 Rambus 將可望藉此判決獲取最少美金1.344億元以上的權利金 (Rambus於2006年指控Hynix 侵犯其擁有的專利一案獲賠美金1.344億元)。Rambus 另控訴Micron Technology與三星(Samsung Electronics Co.)侵害其記憶體專利權。於獲得勝訴後,Rambus 表示其不排除尋求禁止令禁止Hynix 繼續製造侵害其專利的產品。 Micro Technology 則表示它堅決不同意陪審團判決,其法律事務副總裁Rod Lewis表示:Micro Technology認為,Rambus公司從事了一系列欺騙、銷毀證據、虛假證詞和其他不正當活動,企圖誤導和提取不公正的專利授權費用。因此,Micro Technology打算對判決結果進行上訴。另外,Micro Technology也認為,Rambus的專利權是無效的,已要求美國法院駁回Rambus向Micro Technology提出的專利索賠。
OTT服務所涉網路中立性與著作權議題之比較分析-美國與歐盟之新近法制及對我國之建議 德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現