「巨量資料應用」


  當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。

  在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。

本文為「經濟部產業技術司科技專案成果」

※ 「巨量資料應用」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7289&no=64&tp=1 (最後瀏覽日:2025/12/07)
引註此篇文章
你可能還會想看
JD SUPRA研析發布企業員工營業秘密管理戰略

  根據JD SUPRA於2022年4月29日研析美國Bay Fasteners & Components, Inc. v. Factory Direct Logistics, Ltd.案例,並刊出「制定全面性的營業秘密戰略」一文指出,員工的入職和離職是企業營業秘密糾紛產生的主要風險之一。企業在僱用員工時須避免營業秘密的污染和竊取。員工離職時,企業應採取離職面談與提醒,以防止離職員工洩露營業機密。以下針對員工入職、員工離職兩個情形,整理建議企業應採取之對策。   員工入職時,為避免新員工帶來任何營業秘密的污染,企業應教育新進員工保護前雇主營業秘密的重要性、如何將營業秘密從know-how區分出來,或是要求員工證明他們不會透露與持有前雇主的機密資訊或任何非公開資訊。然而,為保護企業的營業秘密不被員工竊取,最直接的方法是使用契約中的保密協議、競業禁止條款進行約束,作為保護企業的證據。   離職面談是防止離職員工向未來雇主揭露企業營業秘密的有效方法。在離職面談時,企業應提供員工入職時所簽訂的保密協議條款與相關任職期間的協議約定,並要求離職員工簽屬確認書證明已被告知應遵守的營業秘密內容範圍及其所負義務,同時企業應記錄離職面談過程的內容。若知悉離職員工未來任職公司,建議以信件通知該公司提醒應尊重彼此的營業秘密。此外,企業在得知員工要離職時,應指示IT部門確認員工電腦登錄及下載歷史紀錄是否有洩漏營業秘密之可疑活動,例如大量讀取文件、使用非公司的IP登入。員工離職後,IT部門應盡快停用該離職員工相關帳號權限,同時考慮資料備份,即使沒有檢測到可疑的活動,也建議備份員工的設備使用狀況和帳號log紀錄,以作為日後面臨爭訟時之證據。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟食品管理局擬建立風險評估外部專家資料庫

  近年來,由於(European Food Safety Authority, 簡稱EFSA)對GM產品之管理並未能進行足夠之科學分析,同時,亦過份仰賴業者所提供之數據資料等原因,而造成歐盟某些會員國家對EFSA所作出之評估報告於公正及客觀性方面產生質疑;甚至,歐洲食品業者亦對目前EFSA是否將會因為專家人力不足而導致整體風險評估能力下降之問題表示關切。一位EFSA官員指出:我們需要更多科學專家來協助處理與風險評估有關之事務。   其次,隨著各界因對GMO產品不當之批判與歐洲整體食品安全評估工作量增加等因素,EFSA於日前決定,欲透過建立一外部專家資料庫(External Expert Database),來協助其風險評估工作之執行並促進評估專家招募過程之透明化,以達成免除外界對於歐洲食品安全評估過程疑慮之目的。不過,這些將提供協助之專家,並不會因此而真正成為EFSA科學評估小組成員(其將被視為是由人民主動對該小組執行評估工作提供協助)。除EFSA擬徵求歐盟境內專家學者外,未來其亦將邀請歐盟以外其他國家並在該領域為重要研究先驅之專家提供協助,以增加風險評估之品質與客觀性。   再者,綠色和平組織歐洲發言人Mark對於EFSA現階段執行之工作狀況也表示意見並指出:目前EFSA是在一種配備不良(ill-equipped)之狀態下,來勉強執行其所執掌之事務;不過,更讓人感到憂心者,則是由EFSA科學評估小組所做出科學性之意見,於不同會員國家間或於歐盟以外其他國家其是否仍將會被完全採納之問題。有鑒於此,相關人士認為:應再次強化EFSA於風險評估方面之能力!   最後,一位非政府機組織專家也提醒:僅單純地透過專家庫之建立,其實,並不能圓滿地解決當前EFSA於決策機制中所遭遇之困難;而只有當EFSA在未來欲邀請外部專家提供協助與支援時,一併將資金及相關政策配套措施納入考量後,才是此問題真正解決之道。

簡析德國自動駕駛與車聯網發展策略

美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作

美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。

TOP