「巨量資料應用」


  當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。

  在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。

本文為「經濟部產業技術司科技專案成果」

※ 「巨量資料應用」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7289&no=64&tp=1 (最後瀏覽日:2025/11/06)
引註此篇文章
你可能還會想看
從「梅花烙」與「宮鎖連城」著作權侵權糾紛案看劇本實質近似之判斷方式

溫室氣體減量及管理法重要議題簡析

日本經產省修正〈電子商務交易及資訊商品交易等準則〉

  日本經濟產業省於2018年12月19日修正「電子商務交易及資訊商品交易等準則」(電子商取引及び情報財取引等に関する準則,以下稱「本準則」),主要係因應2018年《不正競爭防止法》在促進資料利用之環境整備方面,以及《著作權法》在應取得著作權人同意之行為範圍部分之修正。   本準則首次公布於2002年3月,係經產省透過學界、產業界及金融界專家、相關主管機關、消費者等各方合作,整理民法等各相關法規釋疑而成,因此,須隨著法規修正更新本準則中的法規適用、爭點、說明等內容。經產省期能透過本準則提高交易當事人對電子商務交易及資訊商品交易相關市場的可預見性(foreseeability),並促進交易。   本準則此次修正相關重點如下: 於網站上販售或公布用以安裝程式或存取、複製數位內容(digital content)及程式之帳號及密碼者,應負相關衍生之法律責任。 針對透過網路蒐集、輸出、於內部網路登載、投影他人著作物等利用行為者,加以限制規範。 若學校授課、企業培訓係使用網路進行遠距教學,或遠距教學服務之供應商有償向學校、企業提供課程而違法利用他人著作物者,則學校、企業、服務供應商須依著作權法負相關法律責任。 使用者(被授權人)基於契約取得供應商(授權人)之同意得以使用資訊商品,縱使該資訊商品之智慧財產權(著作權、特許權)受讓予他人,使用者仍得繼續使用該資訊商品。 因體驗版之手機應用程式、軟體、共享軟體,對使用功能或使用期間有所限制,若行為人違法散布解除限制方法於網路者,則行為人應負之法律責任。 向第三人提供全部或部份有償之資料集(dataset)等行為者,加以限制規範。 針對使用P2P共享軟體將檔案上傳至網路、自網路上下載以及提供P2P共享軟體等行為,就是否違反著作權法進行討論。 拍攝到第三人著作物之合理使用。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP