「巨量資料應用」


  當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。

  在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。

本文為「經濟部產業技術司科技專案成果」

※ 「巨量資料應用」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7289&no=67&tp=1 (最後瀏覽日:2026/01/23)
引註此篇文章
你可能還會想看
何謂德國「資訊科技安全法(IT-Sicherheitsgesetz)?

  德國聯邦議會於2015年通過資訊科技安全法(IT-Sicherheitsgesetz),主管機關為聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI),隸屬於德國聯邦內政部(Bundesministerium des Innern)。目的是為保障德國公民與企業使用的資訊系統安全,特別是在全國數位化進程中,攸關國家發展的關鍵基礎設施,讓德國成為全球資訊科技系統及數位基礎設施安全的先驅與各國的模範,同時藉此強化德國資訊科技安全企業的競爭力,提升外銷實力。   該法案主題包括,在關鍵基礎設施上改進企業資訊科技安全、保護公民的網路安全、確保德國聯邦資訊科技、加強聯邦資訊技術安全局的能力與資源、擴展聯邦刑事網路犯罪的調查權力。   該法主要係針對關鍵基礎設施營運者(Kritische Infrastrukturbetreiber) 進行安全要求,例如在能源、資訊科技、電信、運輸和交通、醫療、水利、食品、金融與保險等領域的企業。德國聯邦政府要求關鍵基礎設施的營運商,要滿足資訊科技安全的最低標準,且須向聯邦資訊安全局通報資訊安全事件。聯邦資訊安全局要對關鍵基礎設施營運商的資訊進行評估分析,並提供給關鍵基礎設施營運商彙整改善,以提高其基礎設施的保護。

論政府資料探勘應用之個人資料保護爭議

WTO歐盟生技產品案解析(下)

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP