當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。
在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。
本文為「經濟部產業技術司科技專案成果」
美國白宮於2024年2月9日宣布從《晶片與科學法》(CHIPS and Science Act)撥款110億美元執行「CHIPS研發計畫」(CHIPS Research and Development (R&D) programs),並將設立投資基金,協助美國新興半導體公司技術商業化發展。 CHIPS研發計畫源係於美國國會於2022年8月通過《晶片與科學法》,提供527億美元的經費支持美國半導體產業,其中390億美元用於補助半導體生產,110億美元用於半導體研發。此次CHIPS研發計畫的具體作法如下: (1)建置國家半導體技術中心(National Semiconductor Technology Center,簡稱NSTC):為CHIPS研發計畫的核心項目,將投資50億美元建置NSTC,協助美國先進半導體研發與設計,確保美國於半導體領域的領先地位。NSTC將向公眾共享設施與專業知識,幫助創新者取得相關專業知識與能力。此外NSTC亦將推動利益團體(Community of Interest),將開放所有利益相關者就NSTC的規劃提供意見。 (2)投資半導體人才(Investing in the Semiconductor Workforce):創建人才勞動卓越中心(Workforce Center of Excellence),以培育、訓練美國半導體產業所需人才,並促進產業界與學術界的合作。 (3)投資其他關鍵領域研發之需求(Investing in Other Key R&D Needs):向美國晶片製造研究所(CHIPS Manufacturing USA Institute)投資至少2億美元,以創建美國首座半導體製造數位孿生研究所(Semiconductor Manufacturing Digital Twin Institute),以降低晶片研發製造的成本,加速創新技術商業化之週期;以及投資3億美元於先進封裝產業,以提升半導體系統之效能。以外亦投資1億美元資助「CHIPS量測計畫」(CHIPS Metrology Program)的29個項目,幫助研發新型測量設備與方法,以滿足為電子產業的技術需求。
澳洲證券投資委員會與美國商品期貨交易委員會簽訂雙邊合作協議2018年10月4日,澳洲證券投資委員會(Australian Securities and Investments Commission,簡稱:ASIC)與美國商品期貨交易委員會(US Commodity Futures Trading Commission,簡稱:CFTC)簽訂「金融技術創新合作雙邊協議」(Cooperation Arrangement on Financial Technology Innovation’ bilateral agreement,簡稱:協議),該協議內容主要針對未來金融科技(fintech)以及監理科技(regtech)之合作以及相關資訊作交換。 協議內容主要為加強雙方瞭解、識別市場發展趨勢,進而促進金融科技創新,對於運用監理科技之金融產業採取鼓勵的態度。 具體協議內容及相關合作計畫為以下條款: 1. 建立正式合作途徑,其中包含資訊分享,ASIC創新中心與LabCFTC之間的溝通; 2. 協助轉介有興趣於另一管轄權,設立企業之金融科技公司; 3. 促進監管機構定期舉行相關監管會議,討論目前時下發展趨勢,藉以相互學習; 4. 針對非公開資訊及機密資訊,給予監管機構以共享方式流通資訊。 儘管,澳洲與美國已簽訂此協議,惟須注意的地方在於,此協議本質上不具備法律約束力,對監管機構也未加註責任,並強加特定義務,以及未取代任何國內法的法律義務。 雖然,此協議不具任何法律約束力,但美國以及澳洲之金融科技創新產業間已形成一定之默契,以及交叉合作。此種互利合作,使兩國金融創新企業在雙方管轄權下,並且降低跨境成本及加深跨境無障礙性,為兩國監管機構提供最佳執行方式,以及進一步資料之蒐集。
世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。
性隱私內容外流風波-從美國立法例論我國違反本人意願散布性隱私內容之入罪化