日本產業競爭力強化法內之灰色地帶消除制度

  日本經濟產業省(以下簡稱經產省)為了落實安倍內閣提出之日本再興戰略,希望透過相關法制規範之調整,促進產業新陳代謝機制,並喚起民間的投資,進一步解決日本國內企業「過多限制、過小投資、過當競爭」現象,前於2013年10月15日將「產業競爭力強化法」提交國會審議。經日本國會審議後,該法已於同年12月6日公布,計有8章、共156條之條文,另有附則45條,並取代原先於2011年修正之產業活力再生特別措施法的功能。因產業競爭力強化法之內容屬政策性規範,搭配之施行細則、施行令等也陸續於2014年1月20日公布。

  自產業競爭力強化法施行後,對於日本企業預計開發新產品和新技術等放寬限制,讓企業有機會進入與原業務不同之領域,並進行業務整編。舉例而言,依該法第9條第1項之規定:「欲實施新事業活動者依據主務省令規定,可向主務大臣提出要求,確認規定其欲實施之新事業活動及與其相關之事業活動的規範限制之法律和其所根據法律之命令規定的解釋,以及該當規定是否適用於該當新事業活動及與其相關之事業活動」之規定,就相關事業活動是否符合法令與否,向經產省申請解釋。

  此一制度被稱為「灰色地帶消除制度」,目的在於使日本企業規劃新事業之前,可先洽主管機關瞭解該新事業活動涉及之業務是否合法,在經產省網站上已有SOP與申請表格可供參考。而此制度功能在於透過日本主管機關的闡釋、說明或認定相關計畫,讓有意從事創新活動的業者有如吞下定心丸,得以積極規劃、推動後續作業。

本文為「經濟部產業技術司科技專案成果」

※ 日本產業競爭力強化法內之灰色地帶消除制度, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7296&no=64&tp=1 (最後瀏覽日:2026/01/20)
引註此篇文章
你可能還會想看
美國21世紀醫療法最終規則下之資訊封鎖條文生效,患者健康資料進用權利獲保障

  美國國家衛生資訊科技協調辦公室(The Office of the National Coordination for Health Information Technology, ONC)於2020年5月公告的「資訊封鎖最終規則(Information Blocking Final Rule)」,於2021年4月5日正式生效。   ONC依21世紀醫療法(21st Century Cure Act)授權,制定有「21世紀醫療法:協同操作性、資訊封鎖與ONC健康IT認證計畫」(21st Century Cures Act: Interoperability, Information Blocking, and the ONC Health IT Certification Program)最終規則,包含各面向關於新興醫療IT技術之規範,其中特別針對資訊封鎖的相關條文,又稱為「資訊封鎖最終規則」。   21世紀醫療法為了確保病患資料近用權利,在法條中明定禁止資訊封鎖行為。「資訊封鎖」,根據資訊封鎖最終規則的定義,是指健康照護業者或健康資訊技術廠商,包括受認證的健康資訊技術(health IT)、健康資料交換 (health information exchange)或健康資料網絡(health information network),在欠缺法律授權或非屬美國公共衛生服務部(Health and Human Service, HHS)認定合理且必要的情況下,所為之干擾、防止或嚴重阻礙電子健康資料(Electronic Health Information, EHI)獲取、交換及使用行為。但以下八種情況,不適用資訊封鎖最終規則:預防傷害(Preventing Harm)、隱私(Privacy)、安全(Security)、不可行性(Infeasibility) 健康IT性能(Health IT Performance)、內容與方式(Content and Manner)、費用(Fees)、授權(Licensing)。   21世紀醫療法在資訊封鎖章節中規定,資訊封鎖相關條文在資訊封鎖例外類型被定義出來後,始生效力。換言之,在資訊封鎖最終規則生效後,病患將有權依法近用其電子健康資料,資料持有者原則上不得拒絕。值得注意的是,資訊封鎖最終規則生效後至2022年10月6日止,適用資訊封鎖條文的電子健康資料範圍,係以美國協同操作核心資料(United States Core Data for Interoperability, USCDI)中所定義之電子健康資料為準。USCDI,是由ONC主導建立的一套資料標準格式,以統一健康資料交換格式,促進資料流通。2022年10月6日起,資訊封鎖最終規則所指的電子健康資料範圍將不僅只局限於USCDI標準所定義之電子健康資料,將擴及健康保險流通與責任法(Health Insurance Portability and Accountability Act, HIPAA)所定義的所有電子健康資料。

老歌翻唱!手握著作權轉讓證明書便可放心?-簡評智慧財產法院 101 年度民著上字第 9 號判決

日美歐中韓五大專利局首次討論專利調和,並合意加速整備共通專利分類

  由日美歐中韓五大專利局於6月23日、24日於東京召開了第四次五大專利局的首長會議,日本特許廳表示此次會議針對專利制度的調和化展開了正式的討論。   在日本的引導下,五大專利局首次就專利制度的調和展開討論,並就今後的進行方式進行了積極的意見交換。五局在共同認識到國際調和的重要性,與尊重各國主權的前提下,達成今後積極參與促成國際討論的共識。此外,彼此亦達成共識將在五局架構下儘早實施各國專利制度與審查實務之比較研究。   此外,五大專利局亦形成共識,將以日本特許廳與歐洲專利局的專利分類為基礎,加速完備在五局彼此間的共通專利分類。對於日本企業來說,此舉將使全球的專利文獻檢索將變得更為迅速、更加全面,同時專利權的安定性與可靠性也將獲得進一步的確保,同時日本企業也將能更迅速因應來自中韓的專利訴訟風險。   最後,美國6月23日亦於下議院通過了專利改革法案,就專利取得要件從原來的先發明主義改採為與國際趨勢一致的先申請主義,亦屬於這一波國際專利制度的調和趨勢,我國實有及時因應、適時參與的必要。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP