日本產業競爭力強化法內之灰色地帶消除制度

  日本經濟產業省(以下簡稱經產省)為了落實安倍內閣提出之日本再興戰略,希望透過相關法制規範之調整,促進產業新陳代謝機制,並喚起民間的投資,進一步解決日本國內企業「過多限制、過小投資、過當競爭」現象,前於2013年10月15日將「產業競爭力強化法」提交國會審議。經日本國會審議後,該法已於同年12月6日公布,計有8章、共156條之條文,另有附則45條,並取代原先於2011年修正之產業活力再生特別措施法的功能。因產業競爭力強化法之內容屬政策性規範,搭配之施行細則、施行令等也陸續於2014年1月20日公布。

  自產業競爭力強化法施行後,對於日本企業預計開發新產品和新技術等放寬限制,讓企業有機會進入與原業務不同之領域,並進行業務整編。舉例而言,依該法第9條第1項之規定:「欲實施新事業活動者依據主務省令規定,可向主務大臣提出要求,確認規定其欲實施之新事業活動及與其相關之事業活動的規範限制之法律和其所根據法律之命令規定的解釋,以及該當規定是否適用於該當新事業活動及與其相關之事業活動」之規定,就相關事業活動是否符合法令與否,向經產省申請解釋。

  此一制度被稱為「灰色地帶消除制度」,目的在於使日本企業規劃新事業之前,可先洽主管機關瞭解該新事業活動涉及之業務是否合法,在經產省網站上已有SOP與申請表格可供參考。而此制度功能在於透過日本主管機關的闡釋、說明或認定相關計畫,讓有意從事創新活動的業者有如吞下定心丸,得以積極規劃、推動後續作業。

本文為「經濟部產業技術司科技專案成果」

※ 日本產業競爭力強化法內之灰色地帶消除制度, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7296&no=64&tp=5 (最後瀏覽日:2025/12/21)
引註此篇文章
你可能還會想看
FinCEN發布「防制洗錢與打擊資助恐怖主義優先事項」,以因應各種新興威脅

  隨著犯罪集團洗錢管道與手法日新月異,嚴重威脅金融秩序與經濟發展,美國財政部金融犯罪執法網(Financial Crimes Enforcement Network, FinCEN)於2021年6月30日發布防制洗錢與打擊資助恐怖主義(anti-money laundering and countering the financing of terrorism, AML/CFT)政策的優先事項(Priorities),目的係為了應對日益猖獗之洗錢犯罪行為,幫助金融機構評估其風險,並調整其防制洗錢計畫和資源運用優先順序,以提升國家AML/CFT政策效率與有效性。   依據發布內容,優先事項包括:(1)貪汙;(2)網路安全與虛擬貨幣相關之網路犯罪;(3)國內外資助恐怖分子;(4)詐欺;(5)跨國犯罪組織活動;(6)毒品販運組織活動;(7)人口販運與人口走私(human trafficking and human smuggling);(8)資助大規模毀滅性武器擴散(proliferation financing),反映了美國國家安全與全球金融體系長期以來存在之威脅,並將虛擬貨幣用於洗錢、資助恐怖主義,及支付勒索軟體攻擊贖金等納入防制洗錢範疇,防止虛擬貨幣成為洗錢管道。   FinCEN預計於2021年底前提出實施辦法,並根據美國防制洗錢法(Anti-Money Laundering Act)之要求,至少每4年更新一次優先事項,以因應美國金融體系與國家安全面臨的各種新興威脅。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

在美國競業禁止修法趨勢下,雇主可採取的配套措施——–不可避免揭露原則?

美國聯邦貿易委員會(Federal Trade Commission, FTC)於2023年1月提出一項提案,將使所有競業禁止條款無效,惟提案尚未確定。儘管FTC同意該提案將影響對雇主的保護,但也指出營業秘密法已為雇主提供了保護其營業秘密的配套,其中「不可避免揭露原則」(the “inevitable disclosure” doctrine)或許將成為競業禁止協議之替代方案。 不可避免揭露原則是指當公司認為前僱員於新公司任職,將不可避免地使用前公司之營業秘密時,可向法院聲請禁止前僱員至新公司任職。法院通常會考慮下列三個因素,以決定是否基於不當使用營業秘密之「威脅」而授予禁制令救濟,包括: 1.前後雇主是否為提供相同或非常相似服務的直接競爭對手; 2.前僱員的新職位是否與原職位雷同,以至於無法合理地期待該僱員在不利用其前雇主之營業秘密的情況下,能履行其新的工作職責; 3.所涉及的營業秘密對於前後雇主是否都具有相當之價值。 雖然部份州法院指出根據其州法,得適用不可避免揭露原則,但各界對於雇主能否向聯邦法院根據《保護營業秘密法》(Defend Trade Secrets Act, DTSA)援引該原則仍未達成共識。儘管如此,部份聯邦法院強調雇主須明確說明前僱員為何將不可避免地使用或揭露其營業秘密,僅證明前僱員在工作期間獲得機密資訊,並隨後於競爭公司擔任類似職位,不足以證明前僱員將不可避免地使用前公司之營業秘密。 綜上所述,不可避免揭露原則可以防止前僱員不當使用其營業秘密的威脅,但由於聯邦法院對於能否援引該原則的標準仍不明確,僅指出不可避免揭露原則將使雇主面臨較高的舉證要求,故其是否能成為競業禁止協議的替代方案,仍有待觀察。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。

加拿大隱私專員與首席選舉官針對聯邦政黨發布個人資料保護指引

  加拿大隱私專員辦公室(Office of the Privacy Commissioner of Canada, OPC)與加拿大首席選舉官(Chief Electoral Officer of Canada, CEO)於2019年4月1日聯合針對聯邦政黨發布個人資料保護管理之指引(Guidance for federal political parties on protecting personal information)。目前加拿大選舉法(Canada Elections Act, CEA)僅概括規範政黨須制定隱私政策,以保護選民之個人資料,惟其卻未有具體法規制度落實。對此加拿大隱私專員辦公室認為政黨必須提出具體隱私政策來履行其法律義務。   現行加拿大選舉法規範聯邦政黨必須於其網站上公布隱私政策,並提交給加拿大選務局(Elections Canada)。若其隱私政策變更,必須通知首席選舉官,且即時更新網站上隱私政策版本。加拿大聯邦各政黨須於2019年7月1日前完成相關規範,為具體實踐政黨隱私保護制度,加拿大隱私專員辦公室提出幾點隱私政策之必要條件: 一、 聲明蒐集個人資料之類型與如何蒐集個人資料? 二、 如何保護其蒐集之個人資料? 三、 說明如何利用個人資料?是否會將個人資料給予第三方? 四、 針對個人資料蒐集、利用之人員如何培訓?內部控管機制為何? 五、 蒐集分析之資料為何?是否有利用cookie或相關應用程式蒐集? 六、 設置處理個資隱私疑慮專責人員   除此之外,該辦公室更建議參採國際隱私保護作為,著重公平資訊原則,政黨於個資隱私保護上須有其問責制、目的明確性、透明化、限制性蒐集,且未經當事人明確同意不得蒐集政治觀點、宗教或種族等敏感性個資,並應建置保障性措施與合規性管理機制。

TOP