何謂不實施專利實體(Non-Practicing Entity,NPE)?

  所謂NPE依據現行學術界對於NPE的內涵認知,認為NPE係指不從事任何商品生產,亦不從事任何研發工作者。而在現行NPE的運作態樣上,其可包含兩種類型,其一,為大學和研究機構(例如:公、私立實驗室),其主要係由校內教職員或研究人員進行基礎性研究,並將研究成果授權予其他個人或組織來運用,其本身並不從事任何商品生產者;其二,係由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權本質上的排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。後者,英文稱其為『Patent Troll』,中文可譯為『專利巨人』、『專利蟑螂』、『專利流氓』、『專利地痞』或『專利恐怖分子』等。其主要特徵有三項,首先,此類NPE係藉由專利取得的方式,向潛在或可能的專利侵權者(alleged infringers)收取專利授權金;第二,此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;第三,此類NPE投機性地等待商品製造者(industry participants)在投入不可回復鉅額投資後,始對該商品製造者行使專利侵權主張。

本文為「經濟部產業技術司科技專案成果」

※ 何謂不實施專利實體(Non-Practicing Entity,NPE)?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7300&no=64&tp=1 (最後瀏覽日:2025/11/29)
引註此篇文章
你可能還會想看
英國寬頻競爭概況

  為了提高市場競爭,Ofcom於2006年時允許BT集團將旗下網路接取部門獨立為Openreach公司。當時,英國政府希望透過市話迴路細分化(local loop unbundling),並讓所有寬頻網路提供者得以於無差別待遇取得銅絞線網路(copper phone network)批發價,減少不公平競爭產生。在BT分拆多年後,根據Ofcom今(2013)年的統計,原細分化出租之線路從過去的12萬3千條,提升至900萬條,較過去成長70倍。銅絞線批發價公開、合理,亦促使民眾享有比過往更低的資費與更多元的服務,使社會福利成長。   除此之外,市話迴路細分化不僅促進既有固網市場競爭,使消費者僅用一半的價格取得相同服務,亦間接加速業者投資意願,提高英國「高速寬頻」(superfast broadband,30M)的發展。目前,BT光纖建置速度每星期達10萬用戶可接取,輔以Ofcom2010年要求BT光纖基礎設施開放與虛擬細分化(virtual unbundling),使英國已有80家以上業者透過光纖提供網路,增加民眾選擇的權力。是故,在高速網路接取率逐步提高下,致使英國在2012年年底時,已有13%的家戶採用高速寬頻,其成長幅度亦是過往兩倍。   雖然,英國高速網路發展逐步進入軌道,但亦仍有發展之隱憂。首先,有別於銅絞傳輸寬頻網路市場競爭,民眾在選擇高速寬頻網路商時,多數僅願意採用BT與Virgin,造成市場競爭失衡。此外,BT取得政府非商業區光纖建設之多數補助,這是否會造成不競爭,仍後續觀察。最後,BT雖允諾開放其於業者租用光纖線路,但已有多家ISP業者申訴BT利用「價格擠壓」的方式,增加市場優勢。   英國為了在2015年能成為全歐洲寬頻發展最為優秀的國家,近期已宣布將重新檢視現有固網接取市場的管制架構,藉由兼顧市場競爭與基礎建設加速投資,促使網路能普及於英國。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

日本《研究資料基盤整備與國際化戰略》報告書

  日本因應各先進國家近年於開放科學概念下,政府資助研發計畫研究資料管理及開放之倡議與制度化推展趨勢,內閣府於2015年提出開放科學國際動向報告書,並在第5期科學技術基本計畫與2019年統合創新戰略中規劃推動開放科學。上述政策就研究資料管理開放議題,擬定了資料庫整備、研究資料管理運用方針或計劃之制定、掌握相關人才培育與研究資料運用現況等具體施政方針。在此背景下,內閣府於2018年設置「研究資料基盤整備與國際化工作小組(研究データ基盤整備と国際展開ワーキング・グループ)」,持續檢討日本國內研究資料管理、共享、公開、檢索之基盤系統建構與政府制度、國家研究資料戰略與資料方針、國際性層級之推動方向等議題,在2019年10月據此作成《研究資料基盤整備與國際化戰略》(研究データ基盤整備と国際展開に関する戦略)報告書,形成相關政策目標。   本報告書所設定的政策目標採階段性推動,區分為短期目標與中長期目標。短期預計在2020年前,正式開始運用目前開發測試中之研究資料基盤雲端平台系統(NII Research Data Cloud, RDC),針對射月型研發計畫研擬並試行研究資料管理制度,建構詮釋資料(metadata)之集中檢索體系,並建立與歐洲開放科學雲(EOSC)之連結;中長期目標則規劃至2025年前,持續調適運用RDC,正式施行射月型研發計畫之研究資料管理制度,確立共享與非公開型研究資料之管理框架,蒐整管理資料運用現況之相關資訊,並逐步擴張建立與全球研究資料共享平台間之連結。

安全至上 監看有理?-論工作場所電子郵件監看法制爭議

TOP