何謂不實施專利實體(Non-Practicing Entity,NPE)?

  所謂NPE依據現行學術界對於NPE的內涵認知,認為NPE係指不從事任何商品生產,亦不從事任何研發工作者。而在現行NPE的運作態樣上,其可包含兩種類型,其一,為大學和研究機構(例如:公、私立實驗室),其主要係由校內教職員或研究人員進行基礎性研究,並將研究成果授權予其他個人或組織來運用,其本身並不從事任何商品生產者;其二,係由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權本質上的排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。後者,英文稱其為『Patent Troll』,中文可譯為『專利巨人』、『專利蟑螂』、『專利流氓』、『專利地痞』或『專利恐怖分子』等。其主要特徵有三項,首先,此類NPE係藉由專利取得的方式,向潛在或可能的專利侵權者(alleged infringers)收取專利授權金;第二,此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;第三,此類NPE投機性地等待商品製造者(industry participants)在投入不可回復鉅額投資後,始對該商品製造者行使專利侵權主張。

本文為「經濟部產業技術司科技專案成果」

※ 何謂不實施專利實體(Non-Practicing Entity,NPE)?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7300&no=64&tp=1 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
新加坡交易所發布(2013)智財揭露指引鼓勵上市企業揭露智財權利資訊

  新加坡政府於2013年3月完成10年期的IP Hub Master Plan,並點出三個戰略目標,以帶領新加坡成為亞洲的智財匯流中心。在其智財匯流中心(IP Hub)的政策規劃中,主要是希望成為全球: 1.智財交易及管理中心(A hub for IP transactions and management ) 2.優質智財申請中心(A hub for quality IP filings) 3.智財爭端解決中心(A hub for IP dispute resolution)。   針對「智財交易及管理中心」目標實施策略,考量若能鼓勵企業揭露重要的智慧財產權資訊,將有助於使投資人更瞭解公司的競爭優勢及發展潛力。亦即企業的智慧財產權資訊適時揭露,將能爭取到更多外部資金投入,降低募資之成本。   據此,新加坡交易所(Singapore Exchange,SGX)於同年4月1日發佈智財揭露指引鼓勵上市企業揭露智財權利資訊。其中,除涉及可能損及公司商業活動之營業秘密,或涉及專利權之申請等事項外,公司對於智慧財產權之揭露訊息原則包括以下: 1.說明或解釋智財權對於公司經營業務之價值所在 。 2.為確保非專業的投資者都能夠理解揭露資訊,用語不受行話以及技術語言之限制。 3.解釋有關的智財權於根本上影響到公司的經營業務,以及獲利能力和公司及其子公司之前景與整體影響。   實際上,香港交易所亦曾於2012年2月發佈「上市文件智慧財產權揭露規範」,希望申請上市的企業能加強在上市文件中的智慧財產權揭露。該規範與新加坡證交所之智財揭露指引之內容,並無二致,皆希望透過智財權資訊之揭露,以增加投資人之投資意願;亦即,揭露程度越高,公司募資成本越低。

歐盟提出通用型人工智慧模型的著作權管理合規措施建議

歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

新加坡公布「於安全性應用程式負責任地利用生物特徵識別資料指引」協助組織合理利用生物特徵識別資料

  新加坡個人資料保護委員會(Singapore Personal Data Protection Commission, PDPC)於2022年5月17日,公布「於安全性應用程式負責任地利用生物特徵識別資料指引」(Guide on the Responsible Use of Biometric Data in Security Applications),協助物業管理公司(Management Corporation Strata Title, MCST)、建築物及場所所有者或安全服務公司等管理機構,使各管理機構更負責任地利用安全攝影機和生物特徵識別系統,以保護蒐集、利用或揭露的個人生物特徵識別資料。   隨著安全攝影機等科技應用普及化,管理機構以錯誤方法處理個人生物特徵識別資料之情形逐漸增多,因此PDPC發布該指引供管理機構審查其措施。其中包括以下重點: (1)定義生物特徵識別資料包含生理、生物或行為特徵,及以此資料所建立之生物特徵識別模版; (2)說明維安攝影機及生物特徵識別系統運用所應關鍵考量因素,如避免惡意合成生物特徵之身分詐欺、設定過於廣泛而使系統識別錯誤等情形,並舉例資料保護產業最佳範例,如資料加密以避免系統風險、設計管理流程以控管資料等; (3)說明生物特徵識別資料在個資法之義務及例外; (4)列出實例說明如何安全監控之維安攝影機,並提供佈署建築物門禁或應用程式存取控制指引,例如以手機內建生物識別系統管理門禁,以取代直接識別生物特徵,並有提供相關建議步驟及評估表。   該指引雖無法律約束力,仍反映出PDPC對於安全環境中處理生物特徵識別資料之立場。而該指引目前僅針對使用個人資料的安全應用程式之管理機構應用情境,並未涵蓋其他商業用途,也未涵蓋基於私人目的使用安全或生物特徵識別系統之個人,如以個人或家庭身分使用居家高齡長者監控設備、住宅生物特徵識別鎖等應用情境。

歐盟執委會擬改革現行專利訴訟制度,並希望能減省歐洲境內中小企業營運成本

  為求能妥善管理現暨有之歐洲專利與健全歐洲共同體專利制度,歐盟執委會(Commission)正致力於尋求各成員國同意,欲滙集境內能量,來建、整出一套「單一化」專利訴訟制度(Unified Patent Litigation System;簡稱UPLS),以解決境內智財爭議與相關衍生問題,來達到『鼓勵私人發明』及『刺激歐洲境內中小型企業 (Small & Medium Enterprises;簡稱SMEs)持續成長』等目標」。   目前,就已取得歐洲專利局(European Patent Office)所核發專利之專利權人而言,其雖可逐一於歐盟各成員國家中,利用該國專利訴訟程序來保障其自身之發明;然,由於利用不同成員國家之司法系統興訟,甚可能因各類商業習慣或其他種種因素,而致生不同之審判結果;因此,於現行歐洲專利訴訟制度下,除時間與成本外,業者亦須面對司法裁判上之高度不確定性風險。一位負責國際市場暨服務事務官員Charlie McCreevy指出:「已有許多業者表示,歐洲現行之專利訴訟制度,實相當地複雜且繁瑣;且於訴訟進行過程中,除須繳納許多費用外;至取得判決前,其所耗費之時間,亦相當冗長」。   有鑑於此,執委會正擬儘快協調各會員國並統整出一套單一化之專利訴訟制度,以提升訴訟結果之可預見性(Predictability)並減輕訴訟成本。大體而言,該項UPLS制度,應可為歐洲專利權人帶來如後數項利益:(1)提升專利訴訟結果之法律上確定性、(2)減輕訴訟成本與(3)促進專利訴訟制度之商業性近用等;而一位執委會官員補充:「事實上,建置單一化專利法院與訴訟系統,其目的,無非是欲借強化解決智財爭議機制之方法,來達到『鼓勵私人發明』及『刺激歐洲境內中小型企業持續成長』等目標」。   最後,根據一份由德國慕尼黑大學學者Dietmar Harhoff所提出之分析報告顯示,倘若能透過該項措施來避免「重複專利侵害訴訟」或「訴訟撤回」等問題,估計每年將可為業者省下高達1億4千8百萬至2億8千9百萬歐元之專利訴訟費用。

TOP