何謂不實施專利實體(Non-Practicing Entity,NPE)?

  所謂NPE依據現行學術界對於NPE的內涵認知,認為NPE係指不從事任何商品生產,亦不從事任何研發工作者。而在現行NPE的運作態樣上,其可包含兩種類型,其一,為大學和研究機構(例如:公、私立實驗室),其主要係由校內教職員或研究人員進行基礎性研究,並將研究成果授權予其他個人或組織來運用,其本身並不從事任何商品生產者;其二,係由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權本質上的排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。後者,英文稱其為『Patent Troll』,中文可譯為『專利巨人』、『專利蟑螂』、『專利流氓』、『專利地痞』或『專利恐怖分子』等。其主要特徵有三項,首先,此類NPE係藉由專利取得的方式,向潛在或可能的專利侵權者(alleged infringers)收取專利授權金;第二,此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;第三,此類NPE投機性地等待商品製造者(industry participants)在投入不可回復鉅額投資後,始對該商品製造者行使專利侵權主張。

本文為「經濟部產業技術司科技專案成果」

※ 何謂不實施專利實體(Non-Practicing Entity,NPE)?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7300&no=64&tp=1 (最後瀏覽日:2026/01/10)
引註此篇文章
你可能還會想看
2025年美國營業秘密管理重要實務

本文整理美國2025上半年營業秘密管理重要實務,以協助企業強化營業秘密保護。 一、實務常見的兩種不當使用營業秘密情境 由於數位化發展與遠距工作盛行,員工可以更容易地透過隨身碟、電子信箱等方式接觸並傳輸機密(數位文件)。 提醒公司應留意兩個實務常見的不當使用營業秘密的情境: 1. 員工離職後創業或跳槽至競爭公司。 2. 在公司因收購計畫進行盡職調查時,或公司與他方存有供應商、獨立承包商等合作關係期間,公司與他方共享機密資料,接收資訊方卻於協商破局/合作結束後持續留存並不當使用機密。 二、為防患未然,建議公司應「打造營業秘密保護文化」 「打造營業秘密保護文化」的7項重點如下: 1. 識別機密 公司應識別自身所擁有的營業秘密,區分營業秘密與一般資料。如果公司不清楚自己的營業秘密範圍,也會增加員工不知道需要謹慎處理哪些資料的風險。 2. 控管機密文件的重製、流通行為 監控機密文件的列印、下載等重製行為,禁止將公司機密資料傳輸至私人信箱或私人雲端帳戶。 3. 與員工簽訂保密契約,定期提醒保密義務,並客製化員工培訓課程 公司除與員工簽訂保密契約外,當員工開始新專案、轉調部門或升遷時,職務內容的變動,也會連帶影響公司需要向員工更新其對保密義務的理解。 公司應自員工入職起,進行定期的保密培訓與宣導,並針對特定職位客製化相關具體的保密情境,讓員工能夠確實了解公司的保密政策,知道自己應採取/不應採取某些行動,以及行動背後的原因。例如:工程師須了解技術文件的保護方式;銷售團隊需要與客戶資料、定價策略相關的保密培訓課程。 4. 離職人員管理 離職面談應明確提醒員工具持續性的保密義務,且留下相關紀錄,內容應包含對員工任職期間所接觸任何營業秘密的討論資訊,並讓員工簽署書面聲明,確認自己具有保密義務。 5. 網路控管 遠距登入公司系統須透過VPN。 6. 外部活動管理 公司應留意與外部單位(潛在合作夥伴、供應商或客戶)共用敏感資料時,契約須明確約定可共用的資料範圍、可共用資料的人員以及可共用資料的情境。契約應包含保密契約、標示機密資料、返還機密的流程以及定期稽核以確保遵守保密義務。 7. 稽核與改善 定期稽核與持續改善有助於強化營業秘密保護機制,例如:法務、資訊、研發及銷售等部門跨部門協力合作,並持續培訓以打造營業秘密保護文化。 三、面臨營業秘密訴訟,行動策略為關鍵 營業秘密案件通常需要立即採取行動,以防止造成無法彌補的損害。由於在訴訟階段,法院不會僅憑「懷疑」或「模糊描述」就核發禁制令。建議公司平時應落實以下管理措施,以便能夠在發現風險行為後2~3天內,迅速蒐集相應佐證: 1. 證據保全機制應包含:妥善保存電子郵件、系統存取紀錄、裝置使用紀錄等證據。 2. 區分營業秘密的範圍。 3. 持續執行公司所設定的控管措施,如:公司保密政策;保密契約、僱傭契約等契約的保密義務;員工培訓。 4. 留存能夠佐證營業秘密的經濟價值的相關資訊,如:研發投入成本、競爭優勢等。 綜上,公司如欲減少實務上營業秘密糾紛風險,應及早確認是否落實、需要精進公司的營業秘密管理機制,建議國內公司可參考資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」,協助公司檢視並循序調整營業秘密管理作法。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國FDA將基因檢測以醫療器材列管

  美國FDA在七月間針對多家提供大眾基因檢測服務(direct-to-consumer genetic tests, DTI genetic tests)的公司發出通知函,表示將對該產業進行規管。FDA在各通知函中明白表示,其認為收信公司所提供的基因檢測服務,符合其主管之醫療器材管理法規對於體外診斷器材(in vitro diagnostics)之定義。根據美國聯邦法律,人類用醫療器材採用分級管理的概念,在上市前必須依其風險等級進行上市前通報或申請核准,以確保其分析與臨床之有效性。FDA認為,由於這些公司的基因檢測並未依法提出上市前通報或申請核准,涉有違法之嫌。   FDA採取此項措施,明顯是為了保護消費者,避免其受到未經臨床檢驗的檢測結果之誤導。然事實上國際間對於是否透過法令、以及如何規範大眾基因檢測服務,並無一致性看法。迄今,大眾基因檢測服務在許多國家都是在法令混沌未明的狀態下銷售,也引發了許多問題。對於FDA此一政策態度,有認為以法令方式規範此種服務,將會扼殺這個還在萌芽發展終的產業;也有認為,這算是對消費者遲來的保護。   大眾基因檢測服務的管理,顯示既有法令面對新興科技發展之管理窘迫性,也代表各國政府在保護消費大眾與促進新興產業發展之間,著實不易從中找到利益權衡之點,其科技管理面臨前所未有的新挑戰。

美國紐約州長簽署電動車充電樁安裝法案,以實現零碳排放車輛之目標

  2022年11月22日紐約州長Kathy Hochul簽署一項新法案(S.8518A /A.6165A),旨在消除在私人財產上安裝電動車充電樁之障礙,以實現紐約州零碳排放車輛之目標。   該法案允許民眾在家中安裝充電站,並要求屋主協會(Homeowner Association,HOA,類似我國社區管理委員會)如欲拒絕屋主申請安裝電動車充電樁,須提出書面詳細說明理由,如於 60 天內未提出,除非是因為HOA合理要求其補正資料所致,否則屋主的申請即視為許可。紐約州欲透過該法案提升車主於住處安裝電動車充電樁數量,進而提高電動車使用率。   紐約州於2021年已立法(A.4302/S.2758)要求自2035年起販售新車皆需為零碳排放車輛,期許至2050年可達85萬輛零碳排放車輛。透過各項電動車相關政策之推動,2021年紐約州電動車銷售量大幅增長,截至2022年9月全州已超過11.4萬輛電動車上路,電動車充電站超過1萬座。   對此,我國立法院法制局於2022年6月發布「社區設置電動車充電設備問題之研析」報告指出,社區仍應以用電安全第一,不宜強制設置充電樁,現階段宜規定電動車廠商應設置充電設備或更換電池的設施,如要修正「公寓大廈管理條例」強制社區設置電動車的充電設備,建議優先修正「建築法」或「建築技術規則」加強設置該設備安全要求。

歐盟提出人工智慧法律框架草案

  歐盟執委會於2020年2月公布《人工智慧白皮書》(AI White Paper)後,持續蒐集各方意見並提出新的人工智慧規範與行動。2021年4月針對人工智慧法律框架提出規範草案(Proposal for a Regulation on a European approach for Artificial Intelligence),透過規範確保人民與企業運用人工智慧時之安全及基本權利,藉以強化歐盟對人工智慧之應用、投資與創新。   新的人工智慧法律框架未來預計將統一適用於歐盟各成員國,而基於風險規範方法將人工智慧系統主要分為「不可接受之風險」、「高風險」、「有限風險」及「最小風險」四個等級。「不可接受之風險」因為對人類安全、生活及基本權利構成明顯威脅,故將被禁止使用,例如:政府進行大規模的公民評分系統;「高風險」則是透過正面例舉方式提出,包括:可能使公民生命或健康處於危險之中的關鍵基礎設施、教育或職業培訓、產品安全、勞工與就業、基本之私人或公共服務、可能會干擾基本權之司法應用、移民與庇護等面向,而高風險之人工智慧在進入市場之前須要先行遵守嚴格之義務,並進行適當風險評估及緩解措施等。「有限風險」則是指部分人工智慧應有透明度之義務,例如當用戶在與該人工智慧系統交流時,需要告知並使用戶意識到其正與人工智慧系統交流。最後則是「最小風險」,大部分人工智慧應屬此類型,因對公民造成很小或零風險,各草案並未規範此類人工智慧。   未來在人工智慧之治理方面,歐盟執委會建議各國現有管理市場之主管機關督導新規範之執行,且將成立歐洲人工智慧委員會(European Artificial Intelligence Board),推動人工智慧相關規範、標準及準則之發展,也將提出法規沙盒以促進可信賴及負責任之人工智慧。

TOP