什麼是瑞士「創業實驗室」(Venture Lab) ?

  科技與創新委員會(Commission of Technology & Innovation,以下簡稱CTI)係瑞士重要之創新推進機構,成立於1943年,2011年新修正之研究與創新促進法實施後,CTI正式從經濟部聯邦職業教育及科技局(Federal Office for Professional Education and Technology, OEPT)獨立出來,成為一個具決策權的獨立機關,直接隸屬於聯邦經濟事務部(Federal Department of Economic Affairs, FDEA)。

  CTI為擴大高科技創業並創造研發成果商品化之效益推動創業家計畫。該計畫主要係由CTI出資成立的「創業實驗室」(Venture Lab)來執行。創業實驗室針對大學生及創業家推出了一系列創業推廣及訓練課程,從單日的工作坊、五日之創業實務密集課程到在大學開設的創業學期課程,每一個訓練課程都有專家評審,針對創新構想及商業模式給予參與課程者具有建設性的建議。



資料來源:Venture Lab網站
圖 Venturelab 創業課程
 

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 什麼是瑞士「創業實驗室」(Venture Lab) ?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7305&no=64&tp=1 (最後瀏覽日:2026/02/08)
引註此篇文章
你可能還會想看
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用

  在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。   資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。   不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。   由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。   美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。   「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。   不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。

美國政府強化推動「更佳建築倡議」計畫

  美國總統歐巴馬於2011年2月3日,根據美國振興方案(Recovery Act)預算案,宣布推動「更佳建築倡議」(Better Buildings Initiative)計畫,這個倡議計畫承諾透過一系列的獎勵,促進私人企業在建築節能改善上進行投資,並以到2020年要讓商業建築的能源效率提高20%做為目標。   在今年的6月19日,美國能源部與商業部共同宣布選定三個「卓越建築營運中心」(Centers for Building Operations Excellence),由美國能源部和商務部國家標準與技術研究院的製造業擴展夥伴關係(National Institute of Standards and Technologies’ Manufacturing Extension Partnership,NIST MEP)聯合資助130萬美元成立此三個中心,乃為推動「更佳建築倡議」計畫的相關行動之一,希望藉由三個中心的運作,來達成提高能源效率20%,並且期望一年可以減少約400億美元的能源支出。   「卓越建築營運中心」將會與各大學、地方社區、技術學院、貿易協會,以及能源部的國家實驗室合作,建立培訓計劃,提供商業建築專業人士所需要的關鍵技能,以提升建築效率,同時降低了能源的浪費和節省資金。   此三個中心分別位於加州、賓州以及紐約州,提供機會讓當前和未來有可能參與潔淨能源經濟的人,學習寶貴的技能,並且著重在於開發課程以及試點培訓方案,以培育優良的建築的經營者、管理者與能源服務供應商,進行商業、工業與教育建築物上的調整與能源管理。

著作權侵權暫停了妙娃種子園藝盆的銷售

  3D列印設計分享網站Shapeways在週五收到從任天堂神奇寶貝國際公司一個停止侵權的函(cease and desist),是有關於藝術家Claudia Ng的類似神奇寶貝妙娃種子的陶瓷園藝盆設計,他將園藝盆在Shapeways網站上販售,但Shapeways在收到警告信函後移除了網站上的產品列表。   根據Claudia Ng所述,任天堂神奇寶貝國際公司是要求所有有關此模型相關的收益。原本產品列表上並未直接將神奇寶貝遊戲名稱用於此盆栽設計名稱,Claudia Ng標註牠是植物怪獸(succulent monster),但產品列表中數次提及了神奇寶貝公司。最新版的設計將近2.5英吋(6.5公分)高,售價為49美元,目前有多種顏色提供銷售。   Claudia Ng表示:我想這是落於衍生和轉化著作的範疇,我並非一個律師,但我猜測這至少是最廣義的相關法規解釋裡。發生這件事我並不意外,只不過我原本預期該公司會追蹤的是那些有更多侵權設計的人。雖然我承認我個人喜愛的神奇寶貝啟發了我的靈感,但不是神奇寶貝的粉絲也都會喜歡這設計的原因就在於神奇寶貝本身的動物本質(generic-ness)。大多數都公認牠像一隻肥貓。而且我也被要求去設計其他的動物或生物。   Claudia Ng可能會被安排和任天堂神奇寶貝國際公司接觸,雖然他無法確定從這場可能的會議中會發生甚麼事。   3D列印設計分享上有可能設計的產品會侵害他人權利,設計者在靈感啟發上到設計成品時皆須有避免侵權的考量,以免不只無法獲利也有侵權的風險。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

TOP