歐盟在歐盟執委會的支持之下,致力於網實整合的發展,2015年6月歐盟提出以五項關鍵領域作為發展方向,包含交通、能源、健康、生產、以及基礎設施等。其中在智慧製造部分,主要為從大量生產到彈性、個別客製化生產,以及在生產以及產線自動化之下,增加市場競爭力。但針對此等發展,歐盟也提出未來將面臨幾點挑戰:
1.科學:網實整合系統應特別考量社會技術層面、使不同學科整合、結合相關系統理論,以及建構複式領域模型等
2.技術:由於不同的技術方法,因此應建立互通性平台系統、使自動化設計與執行更加成熟、減少資料隱私問題、整合安全性、建立系統方式處理無法確定之資訊等。
3.經濟:透過網實整合,從產品到服務,可建立新的商業模式。
4.教育:網實整合之應用需具備充分的條件,因此,可透過教育及訓練體制來增加對相關應用的認識。
5.法律:減少網實整合系統建立產生的障礙,消除法規解釋不清楚之部分,並且改善以確認整合系統應用正確性。
6.社會:網實整合應用對公共、產業以及政治等層面產生之改變與風險管理。
網實整合在生產力4.0的發展當中,屬於最為核心之部分,目前歐盟所舉出可能產生的面向與問題,值得作為未來政策法制方向之參考。
本文為「經濟部產業技術司科技專案成果」
英國傳播、電信、科技及媒體相關領域業者及團體於 2006 年 4 月聯合發表一份意見書,反對歐盟提出的新視聽媒體服務指令( Audiovisual Media Services Directive )草案。同時英國政府也正關注這項草案並與其他會員國進行討論。 自 2005 年 9 月起,歐盟開始針對電視無國界指令( Television without Frontiers Directive )的修正進行討論。歐盟考慮將該指令修改為視聽媒體服務指令,擴大其規範範圍,使其包括各種與電視相似( TV-like )的服務,並將所有視聽媒體服務區分成線性( linear )及非線性( no-linear )服務,分別給予不同程度的管制。 不過英國有許多業者及團體對於這項新指令的制訂深表不贊同,其認為: (1) 就非線性服務(例如隨選視訊)而言,目前既有法規以及業者自律規範已足以保障消費者; (2) 線性及非線性的分類方式可能不適宜作為法律定義的基礎; (3) 新指令將可能阻礙新進業者參與市場的意願,甚至導致投資者轉向其他國家發展。所以希望透過連署,要求歐盟重新檢視這項新指令。
93年國人申請發明專利數量大幅成長28.39﹪ 創新研發成果明顯躍進93年專利申請統計資料顯示我國受理專利申請案總數、發明申請案數量、及國人發明申請案等指標,均呈現相當幅度成長,顯示我國過去幾年官方與民間投資創新研發成果有明顯成長。 93年專利、商標申請與核准統計出爐,全年專利新申請案件總數72,105件,較92年的65,742 件增加6,363件(9.68﹪),本國人申請案43,038件,外國人29,067件。其中屬技術強度較高的發明申請案件總數計41,930件,較前一年增加6,107件(17.05﹪);本國人發明申請案16,754件,較前一年大幅增加3,705件(28.39﹪),顯示我國產業研發技術成果有向上提昇的趨勢。93年專利發證數66,415件,比92年大幅增加24,333件(57.82﹪),此係因93年7月專利法修正實施,新型專利改採形式審查,縮短專利審查時程,及專利廢除異議制度改採繳費後公告同時發證的制度轉換短期影響。 93年商標申請案依類別統計為72,650件,比92年申請案件數65,907件,增加6,743件(10.23﹪),;93年商標公告註冊案計54,912件,較前一年74,572件減少19,660件(-26.36﹪);依類別計55,986件,均較前一年減少。不論是在申請或公告註冊數都是以本國人佔絕大多數。商標申請於92年底開始實施一申請案多類別制度,不同類別毋需另提出一獨立申請案,因此依類別統計數會比申請案件數多。
日本對未來2020年至2030年間網路基礎設施之預測日本總務省未來網路基礎設施研究會(将来のネットワークインフラに関する研究会)4月份針對日本人工智慧(Artificial Intelligence 簡稱AI)、物聯網(Internet of Things 簡稱IoT)、資訊及通訊技術(Information and Communication Technologies 簡稱ICT)等技術相對應之網路基礎設施做作出預測。 在2020年以後第五代通信技術(5G)、物聯網系統、高畫質通訊等技術相繼成熟及普及化,相關業者勢必發展出多樣化、高度專業化使用者需求之網路結構,而手機聯網系統從單純的資訊傳遞網路,逐漸變成社會系統之神經網絡(社会システムの神経網)。 物聯網服務目前係由專用終端設備,並根據特定的應用目的建構,但在未來的網絡基礎設施,可能出現如橫向合作應用的通用平台,到2030年左右物聯網服務中M2M(Machine to Machine,機器和機器之間的通訊)的佔有率估計將達到10%。 人工智慧網路技術不僅僅是虛擬化層網路(仮想化レイヤのネットワーク)之維護和操作,更是物理層面的網路(物理レイヤのネットワーク)資源的管理,AI仍然只擔任協助之工具。其中,物理網絡(物理ネットワーク)和邏輯網絡(論理ネットワーク)應分別處理,邏輯網絡將型成多層次化,將變得難以檢測故障和調查原因,但在安全和可靠的網絡基礎設施下,經營者使用AI技術仍然是沒有問題的。 由於雲端技術、通訊技術之提昇,非電信營運者進入網路經營之商業型態逐漸產生,型成網路使用者、資料提供者之多樣性及複雜性。網路流量方面,在2030年左右將超出100Tbps核心網絡所需的傳輸容量,達到以往的光纖的容量限制,將透過無線電接入技術進一步發展,補足不足的光學寬頻。然而,人們對於網路更快的通信速度、安全性及可靠性的功能需求是沒有改變的。