「數位藥丸(digital pill)」顧名思義就是將藥物與數位科技結合,藥丸上載有感測器(sensor),在進入人體後傳輸訊號至病人身上的訊號接收器貼片,相關資訊再被傳送給醫療人員。由於許多研究顯示約有半數病人並不會完全遵照醫師指示服藥,使治療效果不彰,並造成醫療資源之浪費。而電子藥丸有助需長期頻繁用藥的族群定時服藥與協助醫療機構追蹤病人服藥狀況,並在臨床試驗中持續觀察病患用藥後的生理反應。
日前美國食品藥物管理署(Food and Drug Association)已接受Proteus Digital Health公司之上市審核申請,不久之後人們將有望享受到此數位藥丸帶來的便利。不過其亦存有一些疑慮以及待克服的技術問題,例如:個人資料之保護措施、控制藥物釋放之系統故障或遭惡意攻擊時之應變等等問題。同時,雖然許多人都認為數位藥丸對病人之疾病控制有利,但是病人之拒絕治療權卻可能因而犧牲,雖然醫生不能強迫病人服藥,但法院強制處分常會牽涉特定的治療程序,此時若病人拒絕服藥,其假釋可能被撤銷,該技術將可能成為一個監視的手段。
本文為「經濟部產業技術司科技專案成果」
國立研究開發法人為日本法制度下三種獨立行政法人類型的其中之一(其餘兩種為中期目標管理法人、與行政執行法人),任務乃是獨立於國家,發揮一定程度之自主性與自律性,從事在國民生活或社會經濟安定性等公益目的上所必要,但不須由國家為主體來執行的科學技術之實驗、研究與開發,並且這些科技研發業務,係基於具備一定中長期政策目標之計畫而進行,目的在於最大限度地確保得以提升國家科技水準、同時攸關經濟健全發展及其他公益的研發成果,並被期待產出得參與國際競爭的世界頂尖水準之新創科技,作為國家戰略的一環,同時專注於基礎科學與國家核心技術的研發。但在國立研究開發法人中,其所屬職員的身分並非公務員。 現在日本共有將近30個獨立研究開發法人,如日本醫療研究開發機構、森林研究‧整備機構‧新能源‧產業技術總合開發機構(NEDO)、國立環境研究所等。
日本政府怎樣對公部門管制DeepSeek?日本政府怎樣對公部門管制DeepSeek? 資訊工業策進會科技法律研究所 2025年07月07日 2025年2月3日,日本個人情報保護委員會(Personal Information Protection Commission,簡稱PPC)發布新聞稿指出[1],DeepSeek所蒐集的資料,將會儲存在中國的伺服器裡,且為中國《國家情報法》的適用對象[2]。這可能將導致個人資料遭到中國政府調用或未經授權的存取。作為中國開發的生成式AI,DeepSeek雖以優異的文本能力迅速崛起,卻也引發資安疑慮。 身處地緣政治敏感區的日本對此高度警覺,成為率先提出警告的國家之一。台灣與日本面臨相似風險,因此日本的應對措施值得借鏡。本文將從PPC新聞稿出發,探討日本如何規範公部門使用DeepSeek。 壹、事件摘要 DeepSeek作為中國快速崛起之生成式AI服務,其使用範圍已快速在全球蔓延。然而,日本PPC發現該公司所公布之隱私政策,內容說明其所蒐集之資料將存儲於中國伺服器內,並依據中國《國家情報法》之適用範圍可能遭到中國政府調用或未經授權之存取。 日本PPC因而於2025年2月3日發布新聞稿,隨後日本數位廳於2月6日發函給各中央省廳,強調在尚未完成風險評估與資安審查之前,政府機關不應以任何形式將敏感資訊輸入DeepSeek,並建議所有業務使用應先諮詢內閣資安中心(内閣サイバーセキュリティセンター,NISC)與數位廳(デジタル庁)意見,才能判定可否導入該類工具[3]。數位大臣平將明亦在記者會中強調:「即使不是處理非機密資料,各機關也應充分考量風險,判斷是否可以使用。」(要機密情報を扱わない場合も、各省庁等でリスクを十分踏まえ、利用の可否を判断する)[4]。 本次事件成為日本對於生成式AI工具採取行政限制措施的首次案例,也引發公私部門對資料主權與跨境平台風險的新一輪討論。 貳、重點說明 一、日本對於人工智慧的治理模式 日本在人工智慧治理方面採取的是所謂的「軟法」(soft law)策略,也就是不依賴單一、強制性的法律來規範,而是以彈性、分散的方式,根據AI的實際應用場景與潛在風險,由相關機關分別負責,或透過部門之間協作因應。因此,針對DeepSeek的管理行動也不是由某一個政府部門單獨推動,而是透過跨部會協作完成的綜合性管控,例如: (一)PPC的警示性通知:PPC公開說明DeepSeek儲存架構與中國法規交錯風險,提醒政府機關與公務人員謹慎使用,避免洩漏資料。 (二)數位廳的行政指引:2025年2月6日,日本數位廳針對生成式AI的業務應用發布通知,明列三項原則:禁止涉密資料輸入、限制使用未明確審查之外部生成工具、導入前應諮詢資安機構。 (三)政策溝通與政治聲明:平將明大臣在記者會上多次強調DeepSeek雖未明列於法條中禁用,但其高風險屬性應視同「潛在危害工具」,需列入高敏感度審查項目。 二、日本的漸進式預防原則 對於DeepSeek的管制措施並未升高至法律層級,日本政府亦沒有一概禁止DeepSeek的使用,而是交由各機關獨自判斷[5]。這反映出了日本在AI治理上的「漸進式預防原則」:先以行政指引建構紅線,再視實際風險與民間回饋考慮是否立法禁用。這樣的作法既保留彈性,又讓官僚系統有所依循,避免「先開放、後收緊」所帶來的信任危機。 三、日本跟循國際趨勢 隨著生成式AI技術迅速普及,其影響已不再侷限於產業應用與商業創新,而是逐漸牽動國家資安、個資保護以及國際政治秩序。特別是生成式AI在資料存取、模型訓練來源及跨境資料流通上的高度不透明,使其成為國家安全與數位主權的新興挑戰。在這樣的背景下,各國對生成式AI工具的風險管理,也從原先聚焦於產業自律與技術規範,提升至涉及國安與外交戰略層面。 日本所採取的標準與國際趨勢相仿。例如韓國行政安全部與教育部也在同時宣布限制DeepSeek使用,歐盟、美國、澳洲等國亦有不同程度的封鎖、審查或政策勸導。日本雖然和美國皆採取「軟法」(soft law)的治理策略,然而,相較於美國以技術封鎖為主,日本因其地緣政治的考量,對於中國的生成式AI採取明確防範的態度,這一點與韓國近期禁止政府機構與學校使用中國AI工具、澳洲政府全面禁止政府設備安裝特定中國應用程式類似。 參、事件評析 這次日本政府對於DeepSeek的應對措施,反映出科技治理中的「資料主權問題」(data sovereignty):即一個國家是否有能力控制、保存與使用其管轄範圍內所生產的資料。尤其在跨境資料傳輸的背景下,一個國家是否能保障其資料不被外國企業或政府擅自使用、存取或監控,是資料主權的核心問題。 生成式AI不同於傳統AI,其運作依賴大規模訓練資料與即時伺服器連接,因此資料在輸入的瞬間可能已被收錄、轉存甚至交付第三方。日本因而對生成式AI建立「安全門檻」,要求跨境工具若未經審核,即不得進入政府資料處理流程。這樣的應對策略預示了未來國際數位政治的發展趨勢:生成式AI不只是科技商品,它已成為跨國治理與地緣競爭的核心工具。 中國通過的《國家情報法》賦予政府調閱私人企業資料的權力,使得中國境內所開發的生成式AI,儼然成為一種資訊戰略利器。若中國政府藉由DeepSeek滲透他國公部門,這將對國家安全構成潛在威脅。在此背景下,日本對公部門使用DeepSeek的管制,可被解讀為一種「數位防衛行為」,象徵著日本在數位主權議題上的前哨部署。 值得注意的是,日本在處理DeepSeek事件時,採取了「不立法限制、但公開警示」的方式來應對科技風險。此舉既避免激烈封鎖引發爭議,又對於資料的運用設下邊界。由於法令規範之制定曠日費時,為避免立法前可能產生之風險,日本先以軟性之限制與推廣手段以防止危害擴大。 台灣雖與日本同處地緣政治的敏感地帶,資料主權議題對社會影響深遠,為使我國可在尚未有立法規範之狀態下,參考日本所採之行政命令內控與公開說明外宣雙向並行之策略,對台灣或許是一種可行的借鏡模式。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]個人情報保護委員会,DeepSeekに関する情報提供,https://www.ppc.go.jp/news/careful_information/250203_alert_deepseek/ (最後瀏覽日:2025/05/06)。 [2]《中华人民共和国国家情报法》第7条第1项:「任何组织和公民都应当依法支持、协助和配合国家情报工作,保守所知悉的国家情报工作秘密。」 [3]デジタル社会推進会議幹事会事務局,DeepSeek等の生成AIの業務利用に関する注意喚起(事務連絡),https://www.digital.go.jp/assets/contents/node/basic_page/field_ref_resources/d2a5bbd2-ae8f-450c-adaa-33979181d26a/e7bfeba7/20250206_councils_social-promotion-executive_outline_01.pdf (最後瀏覽日:2025/05/06)。 [4]デジタル庁,平大臣記者会見(令和7年2月7日),https://www.digital.go.jp/speech/minister-250207-01 (最後瀏覽日:2025/05/06)。 [5]Plus Web3 media,日本政府、ディープシークを一律禁止せず 「各機関が可否を判断する」,https://plus-web3.com/media/500ds/?utm_source=chatgpt.com (最後瀏覽日:2025/05/06)。
為降低奈米材料風險以保障健康安全,美國環保署(EPA)擬公佈一系列相關新規範為了致力於確保及避免因特定奈米材料的曝露而不經意對環境、健康與安全(Environmental, Health and Safety,簡稱EHS)帶來潛在危害,美國環保署(Environmental Protection Agency,簡稱EPA)預計將於今(2011)年1月針對奈米材料的管理規範公佈三項新規定,此舉將使得EPA更能對於目前既有與未來新興奈米材料上有更充分的管理空間,同時這三項新規定也將接受來自公眾與各界人士的意見評論。 這三項新規定分別與顯著新用途規則(Significant New Use Rule)、試驗規則(Testing Rule)和資料收集規則(Data Collection Rule)有關。首先,就顯著新用途規則而言,多年來相關倡議團體(advocacy group)請求EPA將既有的奈米材料視為是「毒性物質管理法」(Toxic Substances Control Act,簡稱TSCA)下的顯著新用途,依此EPA將可管理奈米銀、奈米級二氧化鈦、奈米級氧化鋅等材料,亦可因此對要求廠商限制產量、採取勞工安全措施、進行毒性測試,並要求廠商不得故意將奈米材料釋出或排放至環境中。雖然現在尚無法確知詳細法令規定,但已知EPA有意透過TSCA第5條處理上述種種問題,其可能作法為奈米材料將不再受既有化學物質並非顯著新用途的限制,而任何以既有化學物質製成的新型奈米材料將被視為是顯著新用途。 其次,則是試驗規則,目前EPA對於特定奈米材料要求進行90日呼吸毒性試驗,而新規定將在TSCA第4條之下,要求對奈米粘土、奈米氧化鋁、奈米管等也進行相同的試驗。此係由於目前在經濟合作開發組織(Organization of Economic Cooperation and Development,簡稱OECD)主導的毒性試驗計畫之下,仍未有其他國家願意主導奈米黏土、奈米氧化鋁的試驗,以及通常90日呼吸毒性測試所費不貲,故未來美國預計率先投入,各界亦期盼EPA所提出的新規定將准予廠商以合作提出申請,以利於降低成本並落實相關試驗。 此外,資料收集規則將要求廠商必須正式遞交相關奈米材料的EHS資料,以供EPA進行評估審查,故新規定將在TSCA第8條之下,將原先EPA「奈米材料管理計畫」(Nanoscale Materials Stewardship Program,簡稱NMSP)的自願性參與改為強制性的資料收集,然而由於TSCA中規定對於僅使用少量奈米材料或作為研究目的者,可申請免除資料收集,故廠商仍可依此排除此一義務。 綜合以上,使用相關奈米材料的廠商應密切觀察未來三項新規定的發展動向,以確定日後如何遵守EPA的相關法令規定,落實風險管控,保障自身權益。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。