ENUM服務前景可期?

刊登期別
2005年06月,第194期
 

相關附件
※ ENUM服務前景可期?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=741&no=64&tp=1 (最後瀏覽日:2026/02/10)
引註此篇文章
你可能還會想看
綠色管制風潮與挑戰 經濟部中小企業處推動輔導計畫

  歐盟於2003年通過WEEE及RoHS兩項環保指令,分別為有關「廢電子電機產品回收」(Waste from Electronic and Electrical Equipment, WEEE)及「禁用物質防制」(Restriction on the Use of Hazardous Substances, RoHS)兩項指令,明確規定行銷歐洲市場之電機電子產品,自去(2005)年8月及今年7月起,必須符合WEEE及RoHS禁用六項有害物質(鉛、鎘、汞、六價鉻、PBB及PBDE) 兩指令之規定,才能進入歐洲市場。簡單來說,WEEE係為確保在產品到達壽命終結時,其廢棄的零組件不致污染環境,同時部分材料還要能回收再利用;RoHS旨在規範產品的上游設計及中游製造段必須符合嚴格的環保規範,此兩項環保指令勢必對台灣每年輸往歐洲的電機電子產品,產生相當程度的衝擊,若是產品不符合相關規定,最嚴重將遭受到產品下架的處分。   對此,經濟部擬訂了「我國產業因應歐盟環保指令行動方案」,以今年6月底前輔導輸歐產值80%廠商符合RoHS指令要求為目標,而為了協助台灣中小企業因應新規定,中小企業處將輔導320家中小企業進入綠色材料與供應鏈體系,並與國際綠色供應鏈接軌,提高中小企業綠色競爭力。

菲律賓就共乘服務發布新法令,針對以APP招車及其相關營運進行明確規範

  菲律賓於今(2015)年05月13日發布共乘服務(如:Uber)新法令,成為全球第一個針對以APP招車及相關營運進行明確具體規範的國家。在該法令規範之下,車齡在七年以下之私人轎車、休旅車及小貨車得經如「優步」(Uber)或GrabCar等共乘服務公司之認證合格後參與營運。   菲律賓交通部長阿巴亞(Joseph Emilio Abaya)說明,根據全球資料庫 “Numbeo”公司之調查研究,由於首都馬尼拉(東南亞第二壅塞,僅次於印尼首都雅加達的城市)缺乏足夠的大眾運輸工具,故共乘服務有其需求及必要性。   「我們不應將共乘服務視為傳統計程車產業的損害者,而應該認為它可以提供更優質的服務、同時迫使傳統業者現代化及革新。」阿巴亞在本週就該規範即將施行的簡報中如此闡述。   總部設立於美國的「優步」(Uber),係全球最具價值之風險投資新創公司,估計市值400億美元。關於優步如何支付駕駛報酬、向乘客收取車資費用並確保其安全、以及違反交通法令規範等層面,業已在全球面臨諸多法律挑戰。共乘服務運用科技來連結市民利用其自有私家車與欲搭乘車輛之消費者,而傳統計程車經營者之忿怒則在於其毋須支付許可(執照)費、也毋須遵守當地相關規範。   優步考量到馬尼拉人口達1,500萬之眾,因此預期菲律賓將會是有利可圖的市場。優步菲律賓總經理Laurence Cua於接受路透社(Reuters)訪問時表示:「此次修法,係將消費者的安全置於優先考量,亦認同如優步這類型公司之價值,以及其運用科技改善城市運輸品質之能力。」   然而優步及其他同類公司發現:要在經濟快速成長的東南亞經營,未必是一件輕而易舉的事情。傳統計程車業者揚言要控告政府,以促其保護在馬尼拉攬客維生的27,000部計程車。   「世界各地政府均瞭解計程車業者投資多少於經營,卻僅有菲律賓的業者未受保護。」菲律賓全國計程車駕駛協會主席Jesus Manuel Suntay對路透社如是說。   根據日本獨立行政法人國際協力機構估計,馬尼拉因交通阻塞,每日生產力損失的價值高達5,700萬美元之譜。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

美國參議院提出促進生技學名藥競爭法案

  生技藥品是植基於活體生物的原理所開發出來的治療藥品,自第一批生技藥品上市以來,其專利在最近幾年已陸續到期,因此生技業者對於推出這些生物製品的學名藥版本(generic versions of biologics,以下簡稱生技學名藥),躍躍欲試。然而,美國當前的學名藥法規—藥品價格競爭及專利回復法(Drug Price Competition and Patent Restoration Act, 又名Hatch-Waxman Act, HWA),乃是針對化學藥品的學名藥版本所制定的法規,此類學名藥與生技學名藥並不相同,因此既有的學名藥法規並不能適用於生技學名藥,生技業者無不引頸企盼政府部門通過新的法規,以使生技學名藥儘速上市。   美國參議院最近提出一項生技學名藥法案—生技製品價格競爭與創新法(Biologics Price Competition and Innovation Act, BPCIA),一如HWA,BPCIA的內容也呈現出各種利益折衝的色彩,法案一方面賦予FDA對生技學名藥進行審核的新權限,並藉由減少臨床試驗之進行,加速生技學名藥的上市;另一方面,為避免低價的生技學名藥會對品牌藥的銷售產生衝擊,法案也有針對生技研發公司的研發誘因設計,以鼓勵其持續投入資金,開發更多的生技治療藥品。未來生技學名藥廠需要配合FDA所規劃的風險管理計劃(該計劃的相關立法目前尚待眾議院審議),故生技學名藥廠於其生技學名藥上市後,仍有進行臨床試驗之義務。   法案中最具爭議的條文在於,究竟應給予生技研發公司多長的銷售獨家銷售權(market exclusivity),始得允許生技學名藥廠加入市場競爭,生技研發公司與生技學名藥廠對此的歧見甚大,前者主張十四年,後者則認為五年的時間已足,目前法案訂為十二年。另一個不易處理的議題,則是藥師如何處理此類的生技學名藥,根據目前的法案內容,未來藥師亦可不經徵詢醫師而以生技學名藥代替之。

TOP