2023年7月歐洲創新理事會和中小企業執行機構(European Innovation Council and SMEs Executive Agency , EISMEA)撰文重申綠色商標的重要性與挑戰。隨著環境議題於國際上的重要性日益增加,綠色商標(Green trademarks)成為一個新興議題。許多敏銳的品牌於意識到多數消費者在消費選擇上更注重環保要素時,即開始開發環保相關商品或服務,並透過「綠色」相關之文字、圖像(Images)或標語(Slogans)等進行「綠色商標」布局,向消費者傳達品牌在環保、永續的投入,例如:商品為有機、對地球有益的,或可促進回收利用的等資訊。根據歐盟智慧財產權局(EUIPO)於2023年2月發布最新版之綠色歐盟商標報告(Green EU trade marks–2022 update)的統計資料顯示,綠色商標占總體商標申請的比例穩定上升中,從1996年的4%提升到2021年的12%,可以看出品牌對於綠色商標愈來愈重視。 該報告將綠色產品的商標分別九大類別。其中,能源生產和節能,合計占綠色商標申請的48%以上,污染控制占18%,交通占11%。品牌企業應確保於正確商品或服務類別進行綠色商標布局。除商品或服務註冊類別外,企業於商標註冊前之綠色品牌命名階段,應避免品牌名稱不具商標法要求的識別性,導致被智慧財產局駁回或撤銷商標註冊之風險,例如:以誤導性或純粹描述性(misleading or purely descriptive)的方式使用「生態(Eco)」或「綠色(Green)」等用語(terms)。建議綠色品牌命名應確保避免單純放入該些描述環保特性的用語,而必須考量商標法要求的識別性,能夠使相關消費者能識別綠色商品或服務來源,並得與他人的商品或服務相區別。 綜上所述,隨著近年企業推出綠色品牌、商品或服務,採用環保相關文字或標語作為綠色品牌名稱的情況逐漸增加,這也為商標申請人帶來挑戰。環保意識提升的消費者,對於這些環保相關用語的理解變得更加成熟,品牌商標更容易被認定為單純描述性的用詞(可能符合中華民國商標法第29條第一項不得註冊事由),商標申請人對於品牌商標獨特性的證明上將更加困難。因此,建議品牌擁有者應在商標註冊前之品牌命名階段,更發揮創意、注重商標法「具識別性」之註冊要件,避免品牌命名僅單純向消費者描述環保特色資訊,導致無法取得註冊商標,難以彰顯綠色品牌特色之後果。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國《代幣分類法》(Token Taxonomy Act)草案目前,美國證券管理委員會(U.S. Securities and Exchange Commission, SEC)對於數位貨幣的態度傾向於將代幣視為有價證券。《代幣分類法》(Token Taxonomy Act)草案則是持反對意見的聲浪¬,由美國眾議員Warren Davidson為首,並且獲得跨黨派多位眾議員的支持。《代幣分類法》主要的訴求是希望可以將數位代幣排除於證券,進而排除虛擬貨幣之稅務。重點有三: 修正《證券交易法》,將數位代幣排除於證券 將「數位代幣」(Digital Token)定義為驗證交易或遵循規則防止交易被竄改之「數位單元」(Digital Unit,以電腦可讀取的形式儲存,用於表彰經濟、財產上權利,或存取權限)。同時,在原先「證券」(Security)的定義中,排除「數位代幣」;另將證券「交易」(Exchange)交易排除數位貨幣適用。 擴張銀行之定義 修改「銀行」之定義。原先《1940年投資顧問法》和《1940年投資公司法》所指之「銀行」,包括「取得存款或執行信託權利(Fiduciary Powers)」等與准許經營銀行執行雷同事業者,是否為公司不在所問(Incorporated)。《代幣分類法》將之擴張為「取得存款、提供保管服務(Custodial Services)或執行信託權利」。 修正將虛擬貨幣視為免課稅對象 虛擬貨幣(Virtual Currency)定義為表彰數位價值之交易媒介且不是貨幣。並修正美國《1986國內所得稅法》(Internal Revenue Code of 1986),將虛擬貨幣交易視為免課稅之交易,並將總額小於600美金的虛擬貨幣買賣或交易之所得,排除於總收入(Gross Income)之外。 然而,目前美國證券管理委員會的態度仍未改變,並且於2019年4月3日發表〈數位資產「投資契約」分析之架構〉(Framework for “Investment Contract” Analysis of Digital Assets)。該分析架構說明:凡符合Howey Test之標準的「投資契約」即屬於「證券」,有《證券交易法》的適用。〈數位資產「投資契約」分析之架構〉甫發表,Warren Davidson與另外五位眾議員隨即重新提起2019年版的《代幣分類法》草案,是繼2018年9月、2018年12月第三度提起相關法案。楊安澤(Andrew Yang,美國首位角逐總統的華裔候選人)在2020年民主黨黨內總統初選政見中,亦援引《代幣分類法》草案,希望可以與連署《代幣分類法》草案的美國國會議員和懷俄明州(Wyoming)的立法者,共同擘畫有利於商業與人民的數位資產框架。
歐盟通過網路與資訊系統安全指令歐盟於2016年7月6日公布了網路與資訊系統安全指令(Directive on Security of Network and Information Systems, NIS Directive),該指令目的是希望歐盟內之關鍵基礎服務營運商及數位服務提供者就資訊交換、合作及共通安全要求上有建立及規劃之基本能力,以提高歐盟內部市場之功能。 故至2018年11月前,各會員國須確認境內的關鍵基礎服務營運商並建立一份清單,包含能源、運輸、銀行、金融市場基礎建設、衛生部門、飲水供應及分配、數位基礎設施等部分,其判斷標準為(a)提供維持社會重要或經濟活動之服務;(b)倚賴網路或資訊系統供應之服務;(c)該服務之提供易受顯著破壞影響者。該指令之適用範圍亦納入數位服務,如線上市場、搜尋引擎及雲端服務之數位服務提供者,而上述兩者所適用之規範略有不同,如數位服務提供者在規劃資訊安全措施及資安事件發生之通知義務時,另需將其系統及設施之安全性、事件處理、業務管理之持續性、監測、稽核及測試、符合國際標準等因素列入考量。 此外,為了促進會員國間之策略合作及資訊交換,歐盟將會設立一個合作小組,亦將建立電腦安全事件因應小組(Computer Security Incident Response Teams, CSIRTs),主要負責監測國家資安事件、並對資安風險為預警、因應及分析等,另為確保各會員國彼此間在運作上之迅速與效率,並建立電腦安全事件因應小組網路(CSIRTs network),提供各會員國交換資安風險或事件相關資訊之平台。 該指令於今年8月生效,會員國須於指令生效後21個月內即2018年5月,將指令之內容適用至本國法並公布之,該指令之內容可做為我國訂定資安法規之參考。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現