歐盟執委會於2020年4月7日發起ERA vs CORONA行動計畫,透過歐洲研究區(European Research Area, ERA)全力支持歐洲科研合作、共享科學資訊,並給予歐洲研究團隊與企業充足的研發疫苗資金,用以對抗COVID-19。歐盟執委會已與各國達成共識,確認ERA vs CORONA行動計畫的10項優先行動: 協調各國研究與創新(Research and innovation, R&I)資金投入,專注研發新型冠狀病毒的疫苗與治療方法,加強創新合作模式以對抗疫情。 支持新型冠狀病毒患者的臨床管理,與歐盟大規模臨床實驗計畫。 將資金投入創新領域回應社會需求,關注疫情對社會經濟、醫療及資通訊技術應用、衛生系統及製造業的影響。 藉由Horizon 2020 增加對新創公司的研發財務支持;拓展歐洲創新委員會ePitching計畫(EIC ePitching),鼓勵公私夥伴共同尋求解決方案。 創造資金來源促進R&I行動,引導新創及中小企業申請國家及地方資金、私人基金會、投資歐洲計畫(Invest EU)等。 建立ERA Corona平台,提供研發資金相關的一站式服務,包括歐盟各國補助新型冠狀病毒R&I計畫的完整資訊。 設立新型冠狀病毒特設高階R&I工作小組,規劃歐盟中長期防疫措施。 加強研究基礎設施布建及跨國資料庫利用。 創建歐洲COVID-19研究資料共享平台 ,連接歐洲開放科學雲,允許快速共享研究資料及成果以加速研發、公平分享資訊。 舉辦泛歐黑客松(EU vs Virus)推動歐洲創新與社會交流。
美國環保署於提出首部「限制發電廠有毒氣體排放」國家管制標準草案並預定於2011年11月完成立法美國環保署(Environmental Protection Agency of the United States,以下簡稱EPA)於2011年3月16日首度對於國內發電廠有毒氣體的排放提出國家管制標準草案,並預定於2011年11月完成立法,此項立法措施被譽為近20年來美國空氣污染防治史上的重要里程碑。 美國對於發電廠所排放的有害氣體管制,最早源於美國清淨空氣法案(The Clean Air Act)在1990年要求EPA加強對於發電廠排放之汞(mercury)等有毒氣體之管制,而國會亦要求其須於2004年底以前提出國家管制標準。然而EPA於2005年正式公告「清靜空氣除汞管制規則(the Clean Air Mercury Rule,以下簡稱CAMR規則)」時,卻將燃煤電廠排放汞排除於管制名單外,引發紐澤西等14個州政府與相關環保團體的抗議,並對EPA提起聯邦訴訟。2008年2月8日聯邦上訴法院作出判決,除指出EPA對於發電廠空污之認定前後矛盾外,更認定其在未發現有新事證下擅自將發電廠所排放之空氣污染自CAMR管制名單中移除(delist),已違背反清靜空氣法案之程序要求,故推翻CAMR規則之有效性。 此後,經過密集的聽證會與討論,EPA最終於2011年3月16日正式提出「限制發電廠有毒氣體排放」的國家管制標準,對於發電廠所排放的汞、砷(arsenic)、鉻(chromium)、鎳(nickel)及其他酸性或有毒氣體加以管制,並要求電廠必須採用污染控制技術以減少製造量。 後京都議定書時代中,各國無不致力於新興能源替代方案之提出,惟於新興能源研發應用前的過渡期間仍需仰賴傳統發電技術,美國為解決傳統火力發電對於環境及人體健康所造成的傷害,提出首部國家管制標準草案,其後續對於該國能源結構可能產生何種影響,值得注意。
日本經產省和總務省共同發布AI業者指引草案,公開徵集意見因應生成式AI(Generative AI)快速發展,日本經產省和總務省彙整及更新自2017年起陸續發布之各項AI指引,於2024年1月19日共同公布「AI業者指引草案」(AI事業者ガイドライン案,以下簡稱指引),公開向民眾徵集意見。上述草案除提出AI業者應遵守以人為本、安全性、公平性、隱私保護、透明性、問責性、公平競爭、創新等共通性原則外,並進一步針對AI開發者(AI Developer)、AI提供者(AI Provider)及AI利用者(AI Business User)提出具體注意事項,簡述如下: (1)AI開發者:研發AI系統之業者。由於在開發階段設計或變更AI模型將影響後續使用,故指引認為開發者應事先採取可能對策,並在倫理和風險之間進行權衡,避免因重視正確性而侵害隱私或公平性,或因過度在意隱私保護而影響透明性。此外,開發者應盡量保留紀錄,以便於預期外事故發生時可以進行說明。 (2)AI提供者:向AI使用者或非業務上使用者提供AI系統、產品或服務之業者。提供者應以系統順利運作及正常使用為前提,提供AI系統和服務,並避免侵害利害關係人之利益。 (3)AI使用者:基於商業活動使用AI系統或服務之業者。使用者應於提供者所設定之範圍內使用AI,以最大限度發揮AI效益,提高業務效率及生產力。